An efficient epistemic uncertainty analysis method using evidence theory

被引:38
作者
Zhang, Z. [1 ]
Ruan, X. X. [1 ]
Duan, M. F. [1 ]
Jiang, C. [1 ]
机构
[1] Hunan Univ, Coll Mech & Vehicle Engn, State Key Lab Adv Design & Mfg Vehicle Body, Changsha 410082, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Uncertainty analysis; Epistemic uncertainty; Evidence theory; Probability bound analysis; RELIABILITY-ANALYSIS; DESIGN OPTIMIZATION; SENSITIVITY-ANALYSIS; RESPONSE ANALYSIS; CONVEX MODEL; QUANTIFICATION; REPRESENTATIONS; APPROXIMATION; INFORMATION; PROPAGATION;
D O I
10.1016/j.cma.2018.04.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Evidence theory is widely regarded as a promising mathematical tool for epistemic uncertainty analysis. However, the heavy computational burden has severely hindered its application in practical engineering problems, which is essentially caused by the discrete uncertainty quantification mechanism of evidence variables. In this paper, an efficient epistemic uncertainty analysis method using evidence theory is proposed, based on a probabilistic and continuous representation of the epistemic uncertainty presented in evidence variables. Firstly, each evidence variable is equivalently transformed to a Johnson p-box which is a family of Johnson distributions enveloped by the CDF bounds. Subsequently, the probability bound analysis is conducted for the input Johnson p-box and the response CDF based on monotonicity analysis. Finally, the CDF bounds of the response are directly calculated using the CDF bounds of the input Johnson p-boxes, by which a high computational efficiency is achieved for the proposed method. Two mathematical problems and two engineering applications are presented to demonstrate the effectiveness of the proposed method. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:443 / 466
页数:24
相关论文
共 53 条
[1]  
[Anonymous], 2001, AIAA NOND APPR FOR
[2]   Sensitivity analysis of structural response uncertainty propagation using evidence theory [J].
Bae, HR ;
Grandhi, RV ;
Canfield, RA .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2006, 31 (04) :270-279
[3]   An approximation approach for uncertainty quantification using evidence theory [J].
Bae, HR ;
Grandhi, RV ;
Canfield, RA .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2004, 86 (03) :215-225
[4]   Epistemic uncertainty quantification techniques including evidence theory for large-scale structures [J].
Bae, HR ;
Grandhi, RV ;
Canfield, RA .
COMPUTERS & STRUCTURES, 2004, 82 (13-14) :1101-1112
[5]   Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties [J].
Bai, Y. C. ;
Jiang, C. ;
Han, X. ;
Hu, D. A. .
FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2013, 68 :52-62
[6]   Comparative study of metamodeling techniques for reliability analysis using evidence theory [J].
Bai, Y. C. ;
Han, X. ;
Jiang, C. ;
Liu, J. .
ADVANCES IN ENGINEERING SOFTWARE, 2012, 53 :61-71
[7]   Practical representations of incomplete probabilistic knowledge [J].
Baudrit, C. ;
Dubois, D. .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 51 (01) :86-108
[8]  
Ben-Haim Y., 1990, CONVEX MODELS UNCERT
[9]  
Brunns M., 2006, ASME Conference Proceedings., P1077
[10]  
Cai K., 1996, INTRO FUZZY RELIABIL