Weakly and strongly regular near-rings

被引:7
作者
Argac, N [1 ]
Groenewald, NJ
机构
[1] Ege Univ, Fac Sci, Dept Math, TR-35100 Izmir, Turkey
[2] Univ Port Elizabeth, Dept Math, ZA-6000 Port Elizabeth, South Africa
关键词
weakly regular; strongly regular; completely prime;
D O I
10.1142/S1005386705000118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove some basic properties of left weakly regular near-rings. We give an affirmative answer to the question whether a left weakly regular near-ring with left unity and satisfying the IFP is also right weakly regular. In the last section, we use among others left 0-prime and left completely prime ideals to characterize strongly regular near-rings.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 21 条
[1]  
Andrunakievich A. V., 1981, SOV MATH DOKL, V24, P1
[2]   RIGHT FULLY IDEMPOTENT RINGS NEED NOT BE LEFT FULLY IDEMPOTENT [J].
ANDRUSZKIEWICZ, RR ;
PUCZYLOWSKI, ER .
GLASGOW MATHEMATICAL JOURNAL, 1995, 37 :155-157
[4]   PRIME IDEALS AND PRIME RADICALS IN NEAR-RINGS [J].
BIRKENMEIER, G ;
HEATHERLY, H ;
LEE, E .
MONATSHEFTE FUR MATHEMATIK, 1994, 117 (3-4) :179-197
[5]  
Birkenmeier GF., 1999, Mathematica Pannonica, V10, P257
[6]  
BOOTH GL, 1996, MATH JPN, V43, P425
[7]  
DHEENA P, 1989, INDIAN J PURE AP MAT, V20, P58
[8]  
Du XN., 1994, J MATH RES EXPOS, V14, P57
[9]  
GOYAL AK, 1979, STUDIA SCI MATH HUAN, V14, P69
[10]   THE COMPLETELY PRIME RADICAL IN NEAR-RINGS [J].
GROENEWALD, NJ .
ACTA MATHEMATICA HUNGARICA, 1988, 51 (3-4) :301-305