Approximation of Fixed Points for Mean Nonexpansive Mappings in Banach Spaces

被引:0
作者
Ahmad, Junaid [1 ]
Ullah, Kifayat [2 ]
Arshad, Muhammad [1 ]
de la Sen, Manuel [3 ]
机构
[1] Int Islamic Univ, Dept Math & Stat, H-10, Islamabad 44000, Pakistan
[2] Univ Lakki Marwat, Dept Math, Lakki Marwat 28420, Khyber Pakhtunk, Pakistan
[3] Univ Basque Country, Inst Res & Dev Proc, Campus Leioa Bizkaia,POB 644 Bilbao, Leioa 48940, Spain
关键词
CONVERGENCE; OPERATORS; WEAK;
D O I
10.1155/2021/1934274
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish weak and strong convergence theorems for mean nonexpansive maps in Banach spaces under the Picard-Mann hybrid iteration process. We also construct an example of mean nonexpansive mappings and show that it exceeds the class of nonexpansive mappings. To show the numerical accuracy of our main outcome, we show that Picard-Mann hybrid iteration process of this example is more effective than all of the Picard, Mann, and Ishikawa iterative processes.
引用
收藏
页数:6
相关论文
共 18 条
[1]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[3]  
Cho SY, 2018, J NONLINEAR CONVEX A, V19, P251
[4]  
Clarkson JA, 1936, T AM MATH SOC, V40, P396
[5]   ZUM PRINZIP DER KONTRAKTIVEN ABBILDUNG [J].
GOHDE, D .
MATHEMATISCHE NACHRICHTEN, 1965, 30 (3-4) :251-&
[6]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150
[7]   A Picard-Mann hybrid iterative process [J].
Khan, Safeer Hussain .
FIXED POINT THEORY AND APPLICATIONS, 2013, :1-10
[8]   MEAN VALUE METHODS IN ITERATION [J].
MANN, WR .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (03) :506-510
[10]  
Picard E., 1890, J. Math. Pures Appl., V6, P145