Wavelet Image Restoration and Regularization Parameters Selection

被引:0
|
作者
Qu, Leming [1 ]
机构
[1] Boise State Univ, Dept Math, Boise, ID 83725 USA
来源
FCST 2009: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON FRONTIER OF COMPUTER SCIENCE AND TECHNOLOGY | 2009年
关键词
Wavelet; image restoration; Lasso; AIC; THRESHOLDING ALGORITHM; RECONSTRUCTION; SHRINKAGE; DECONVOLUTION;
D O I
10.1109/FCST.2009.18
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
For the restoration of an image based on its noisy distorted observations, we propose wavelet domain restoration by scale-dependent l(1) penalized regularization method (WaveRSL1). The data adaptive choice of the regularization parameters is based on the Akaike Information Criterion (AIC) and the degrees of freedom (df) is estimated by the number of nonzero elements in the solution. Experiments on some commonly used testing images illustrate that the proposed method possesses good empirical properties.
引用
收藏
页码:241 / 247
页数:7
相关论文
共 50 条
  • [1] ASSIGNING AUTOMATIC REGULARIZATION PARAMETERS IN IMAGE RESTORATION
    Gallo, Ignazio
    Binaghi, Elisabetta
    VISAPP 2009: PROCEEDINGS OF THE FOURTH INTERNATIONAL CONFERENCE ON COMPUTER VISION THEORY AND APPLICATIONS, VOL 1, 2009, : 74 - 77
  • [2] Nonlocal Gradient Sparsity Regularization for Image Restoration
    Liu, Hangfan
    Xiong, Ruiqin
    Zhang, Xinfeng
    Zhang, Yongbing
    Ma, Siwei
    Gao, Wen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2017, 27 (09) : 1909 - 1921
  • [3] Image restoration via wavelet-based low-rank tensor regularization
    Liu, Shujun
    Li, Wanting
    Cao, Jianxin
    Zhang, Kui
    Hu, Shengdong
    OPTIK, 2023, 273
  • [4] Wavelet domain image restoration with adaptive edge-preserving regularization
    Belge, M
    Kilmer, ME
    Miller, EL
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (04) : 597 - 608
  • [5] Automatic fidelity and regularization terms selection in variational image restoration
    A. Lanza
    M. Pragliola
    F. Sgallari
    BIT Numerical Mathematics, 2022, 62 : 931 - 964
  • [6] Automatic fidelity and regularization terms selection in variational image restoration
    Lanza, A.
    Pragliola, M.
    Sgallari, F.
    BIT NUMERICAL MATHEMATICS, 2022, 62 (03) : 931 - 964
  • [7] Efficient Iterative Regularization Method for Total Variation-Based Image Restoration
    Ma, Ge
    Yan, Ziwei
    Li, Zhifu
    Zhao, Zhijia
    ELECTRONICS, 2022, 11 (02)
  • [8] Image restoration using the RBF network with variable regularization parameters
    Inoue, K
    Iiguni, Y
    Maeda, H
    NEUROCOMPUTING, 2003, 50 : 177 - 191
  • [9] An efficient nonconvex regularization for wavelet frame and total variation based image restoration
    Lv, Xiao-Guang
    Song, Yong-Zhong
    Li, Fang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 553 - 566
  • [10] Parallel Proximal Algorithm for Image Restoration Using Hybrid Regularization
    Pustelnik, Nelly
    Chaux, Caroline
    Pesquet, Jean-Christophe
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (09) : 2450 - 2462