Raising the 'Good' Oxidants for Immune Protection

被引:28
作者
Dumas, Alexia [1 ]
Knaus, Ulla G. [1 ]
机构
[1] Univ Coll Dublin, Sch Med, Conway Inst, Dublin, Ireland
来源
FRONTIERS IN IMMUNOLOGY | 2021年 / 12卷
基金
爱尔兰科学基金会;
关键词
reactive oxygen species; NADPH oxidase; microbiota; host defense; immune signaling; redox medicine; lactobacilli; glucose oxidase; CHRONIC GRANULOMATOUS-DISEASE; NEUTROPHIL EXTRACELLULAR TRAPS; COLONY-STIMULATING FACTOR; FORMYL PEPTIDE RECEPTOR; INFLAMMATORY-BOWEL-DISEASE; REDOX-DEPENDENT REGULATION; EPITHELIAL-CELL MIGRATION; ATP-MEDIATED ACTIVATION; NITRIC-OXIDE SYNTHASE; REACTIVE OXYGEN;
D O I
10.3389/fimmu.2021.698042
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.
引用
收藏
页数:19
相关论文
共 280 条
[1]   Mitochondria-Derived Vesicles Deliver Antimicrobial Reactive Oxygen Species to Control Phagosome-Localized Staphylococcus aureus [J].
Abuaita, Basel H. ;
Schultz, Tracey L. ;
O'Riordan, Mary X. .
CELL HOST & MICROBE, 2018, 24 (05) :625-+
[2]   Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1 [J].
Alam, A. ;
Leoni, G. ;
Wentworth, C. C. ;
Kwal, J. M. ;
Wu, H. ;
Ardita, C. S. ;
Swanson, P. A. ;
Lambeth, J. D. ;
Jones, R. M. ;
Nusrat, A. ;
Neish, A. S. .
MUCOSAL IMMUNOLOGY, 2014, 7 (03) :645-655
[3]   Redox Signaling via Lipid Peroxidation Regulates Retinal Progenitor Cell Differentiation [J].
Albadri, Shahad ;
Naso, Federica ;
Thauvin, Marion ;
Gauron, Carole ;
Parolin, Carola ;
Duroure, Karine ;
Vougny, Juliette ;
Fiori, Jessica ;
Boga, Carla ;
Vriz, Sophie ;
Calonghi, Natalia ;
Del Bene, Filippo .
DEVELOPMENTAL CELL, 2019, 50 (01) :73-+
[4]   Correlation Between Intraluminal Oxygen Gradient and Radial Partitioning of Intestinal Microbiota [J].
Albenberg, Lindsey ;
Esipova, Tatiana V. ;
Judge, Colleen P. ;
Bittinger, Kyle ;
Chen, Jun ;
Laughlin, Alice ;
Grunberg, Stephanie ;
Baldassano, Robert N. ;
Lewis, James D. ;
Li, Hongzhe ;
Thom, Stephen R. ;
Bushman, Frederic D. ;
Vinogradov, Sergei A. ;
Wu, Gary D. .
GASTROENTEROLOGY, 2014, 147 (05) :1055-+
[5]   NADPH Oxidase Modifies Patterns of MHC Class II-Restricted Epitopic Repertoires through Redox Control of Antigen Processing [J].
Allan, Euan R. O. ;
Tailor, Pankaj ;
Balce, Dale R. ;
Pirzadeh, Payman ;
McKenna, Neil T. ;
Renaux, Bernard ;
Warren, Amy L. ;
Jirik, Frank R. ;
Yates, Robin M. .
JOURNAL OF IMMUNOLOGY, 2014, 192 (11) :4989-5001
[6]   Targeting virulence: can we make evolution-proof drugs? [J].
Allen, Richard C. ;
Popat, Roman ;
Diggle, Stephen P. ;
Brown, Sam P. .
NATURE REVIEWS MICROBIOLOGY, 2014, 12 (04) :300-308
[7]   NADPH oxidase-derived H2O2 subverts pathogen signaling by oxidative phosphotyrosine conversion to PB-DOPA [J].
Alvarez, Luis A. ;
Kovacic, Lidija ;
Rodriguez, Javier ;
Gosemann, Jan-Hendrik ;
Kubica, Malgorzata ;
Pircalabioru, Gratiela G. ;
Friedmacher, Florian ;
Cean, Ada ;
Ghise, Alina ;
Sarandan, Mihai B. ;
Puri, Prem ;
Daff, Simon ;
Plettner, Erika ;
von Kriegsheim, Alex ;
Bourke, Billy ;
Knaus, Ulla G. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (37) :10406-10411
[8]   Therapeutic potential of targeting hydrogen peroxide metabolism in the treatment of brain ischaemia [J].
Armogida, Marta ;
Nistico, Robert ;
Mercuri, Nicola Biagio .
BRITISH JOURNAL OF PHARMACOLOGY, 2012, 166 (04) :1211-1224
[9]   Glucose Oxidase Incorporated Collagen Matrices for Dermal Wound Repair in Diabetic Rat Models: A Biochemical Study [J].
Arul, V. ;
Masilamoni, J. G. ;
Jesudason, E. P. ;
Jaji, P. J. ;
Inayathullah, M. ;
John, D. G. Dicky ;
Vignesh, S. ;
Jayakumar, R. .
JOURNAL OF BIOMATERIALS APPLICATIONS, 2012, 26 (08) :917-938
[10]   Discovery of BMS-986235/LAR-1219: A Potent Formyl Peptide Receptor 2 (FPR2) Selective Agonist for the Prevention of Heart Failure [J].
Asahina, Yoshikazu ;
Wurtz, Nicholas R. ;
Arakawa, Kazuto ;
Carson, Nancy ;
Fujii, Kiyoshi ;
Fukuchi, Kazunori ;
Garcia, Ricardo ;
Hsu, Mei-Yin ;
Ishiyama, Junichi ;
Ito, Bruce ;
Kick, Ellen ;
Lupisella, John ;
Matsushima, Shingo ;
Ohata, Kohei ;
Ostrowski, Jacek ;
Saito, Yoshifumi ;
Tsuda, Kosuke ;
Villarreal, Francisco ;
Yamada, Hitomi ;
Yamaoka, Toshikazu ;
Wexler, Ruth ;
Gordon, David ;
Kohno, Yasushi .
JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (17) :9003-9019