Jones-Wassermann subfactors for disconnected intervals

被引:50
作者
Xu, F [1 ]
机构
[1] Univ Oklahoma, Dept Math, Norman, OK 73019 USA
关键词
D O I
10.1142/S0219199700000153
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the Jones-Wassermann subfactors for disconnected intervals, which are constructed from the representations of loop groups of type A, are finite-depth subfactors. The index value and the dual principal graphs of these subfactors are completely determined. The square root of the index value in the case of two disjoint intervals for vacuum representation is the same as the quantum 3-manifold invariant of type A evaluated on S-1 X S-2.
引用
收藏
页码:307 / 347
页数:41
相关论文
共 23 条
  • [1] THE BRANCHING-RULES OF CONFORMAL EMBEDDINGS
    ALTSCHULER, D
    BAUER, M
    ITZYKSON, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (02) : 349 - 364
  • [2] THE UNIVERSAL STRUCTURE OF LOCAL ALGEBRAS
    BUCHHOLZ, D
    DANTONI, C
    FREDENHAGEN, K
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 111 (01) : 123 - 135
  • [3] Fredenhagen K, 1990, ALGEBRAIC THEORY SUP
  • [4] FREDENHAGEN K, 1992, SUPERSELECTON SECTOR, V2, P113
  • [5] OPERATOR-ALGEBRAS AND CONFORMAL FIELD-THEORY
    GABBIANI, F
    FROHLICH, J
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 155 (03) : 569 - 640
  • [6] RELATIVISTIC INVARIANCE AND CHARGE CONJUGATION IN QUANTUM-FIELD THEORY
    GUIDO, D
    LONGO, R
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (03) : 521 - 551
  • [7] GUIDO D, IN PRESS COMM MATH P
  • [8] Kac V.G, 1990, INFINITE DIMENSIONAL, Vthird, DOI DOI 10.1017/CBO9780511626234
  • [9] MODULAR AND CONFORMAL-INVARIANCE CONSTRAINTS IN REPRESENTATION-THEORY OF AFFINE ALGEBRAS
    KAC, VG
    WAKIMOTO, M
    [J]. ADVANCES IN MATHEMATICS, 1988, 70 (02) : 156 - 236
  • [10] A REMARK ON THE MINIMAL INDEX OF SUBFACTORS
    KOSAKI, H
    LONGO, R
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 1992, 107 (02) : 458 - 470