On weakly quasipure injective groups

被引:1
作者
Chekhlov, A. R. [1 ]
机构
[1] Tomsk VV Kuibyshev State Univ, Tomsk 634050, Russia
关键词
pure subgroup; quasipure injective group; weakly quasipure injective group; torsion-free group; (almost) completely decomposable subgroup;
D O I
10.1134/S0001434607030121
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An Abelian group is said to be weakly quasipure injective if every endomorphism of any pure subgroup of the group can be extended to an endomorphism of the group itself. A description of the weakly quasipure injective groups in some classes of groups is obtained.
引用
收藏
页码:379 / 391
页数:13
相关论文
共 11 条
[1]  
ARNOLD DM, 1979, P LOND MATH SOC, V38, P532
[2]   Quasipure injective torsion-free groups with indecomposable pure subgroups [J].
Chekhlov, AR .
MATHEMATICAL NOTES, 2000, 68 (3-4) :502-506
[3]   QUASIPURE INJECTIVE TORSION-FREE ABELIAN-GROUPS [J].
CHEKHLOV, AR .
MATHEMATICAL NOTES, 1989, 46 (3-4) :739-743
[4]   On a class of endotransitive groups [J].
Chekhlov, AR .
MATHEMATICAL NOTES, 2001, 69 (5-6) :863-867
[5]  
CHEKHLOV AR, 1991, MATH NOTES, V10, P157
[6]  
Dobrusin Y.B., 1986, ABELIAN GROUPS MODUL, V4, P36
[7]  
DOBRUSIN YB, 1980, ABELIAN GROUPS MODUL, P45
[8]  
Fuchs L., 1973, INFINITE ABELIAN GRO, V1
[9]  
KOZHUKHOV SF, 1986, ABELIAN GROUPS MODUL, V4, P91
[10]   A CLASS OF QUASIPURE INJECTIVE ABELIAN-GROUPS [J].
KRYLOV, PA .
MATHEMATICAL NOTES, 1989, 45 (3-4) :301-304