Response of a proton exchange membrane fuel cell to step changes in mass flow rates

被引:6
|
作者
Kupeli, Seda [1 ]
Celik, Erman [2 ]
Karagoz, Irfan [1 ]
机构
[1] Uludag Univ, Engn Fac, Mech Engn Dept, TR-16059 Bursa, Turkey
[2] Firat Univ, Fac Technol, Mech Engn Dept, Elazig, Turkey
关键词
computational fluid dynamics; fuel cell; modeling; proton exchange membrane; step response; time constant; PERFORMANCE; CHANNEL; DESIGN; TRANSPORT; PEMFC;
D O I
10.1002/fuce.202000170
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Transient regime effects are particularly important in fuel cells designed for vehicles. Three-dimensional modeling of a proton exchange membrane fuel cell with a serpentine channel is presented, and the response of the fuel cell to a step-change in the mass flow rates is analyzed by using the computational fluid dynamics techniques. After a validation study of the mathematical and numerical model, step increases of 20% in mass flow rates are applied to the inlet boundary conditions, and time dependent power and current density responses of the fuel cell are analyzed. Polarization curves are generated for the assessment of the fuel cell performance, and their variations in time are presented. The results show that current and power densities increase with time at low cell voltage values due to concentration losses; however, increases in power and current are negligible at high voltages.
引用
收藏
页码:338 / 346
页数:9
相关论文
共 50 条
  • [41] Three-dimensional optimisation of a fuel gas channel of a proton exchange membrane fuel cell for maximum current density
    Obayopo, Surajudeen Olanrewaju
    Bello-Ochende, Tunde
    Meyer, Josua Petrus
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (03) : 228 - 241
  • [42] Effect of gas diffusion layer and membrane properties in an annular proton exchange membrane fuel cell
    Khazaee, I.
    Ghazikhani, M.
    Esfahani, M. Nasr
    APPLIED SURFACE SCIENCE, 2012, 258 (06) : 2141 - 2148
  • [43] Variation Characteristic Analysis of Water Content at the Flow Channel of Proton Exchange Membrane Fuel Cell
    Zhang, Lu
    Liu, Yongfeng
    Pei, Pucheng
    Liu, Xintong
    Wang, Long
    Wan, Yuan
    ENERGIES, 2022, 15 (09)
  • [44] Flow Field Design for Scaled-Up Proton Exchange Membrane Fuel Cell Stack
    Yogesha, S. A.
    Ghosh, Prakash Chandra
    2023 IEEE IAS GLOBAL CONFERENCE ON RENEWABLE ENERGY AND HYDROGEN TECHNOLOGIES, GLOBCONHT, 2023,
  • [45] Thermal and flow analysis in a proton exchange membrane fuel cell
    Jung, HM
    Koo, JY
    KSME INTERNATIONAL JOURNAL, 2003, 17 (09): : 1358 - 1370
  • [46] Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends
    Iranzo, A.
    Arredondo, C. H.
    Kannan, A. M.
    Rosa, F.
    ENERGY, 2020, 190
  • [47] Thermal and flow analysis in a proton exchange membrane fuel cell
    Hye-Mi Jung
    Ja-Ye Koo
    KSME International Journal, 2003, 17 : 1358 - 1370
  • [48] Proton Exchange Membrane Fuel Cell Materials
    Liu Zhixiang
    Qian Wei
    Guo Jianwei
    Zhang Jie
    Wang Cheng
    Mao Zongqiang
    PROGRESS IN CHEMISTRY, 2011, 23 (2-3) : 487 - 500
  • [49] An Experimental Study on Micro Proton Exchange Membrane Fuel Cell
    Chen, Chiun-Hsun
    Chen, Tang-Yuan
    Cheng, Chih-Wei
    Peng, Rong-Guie
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2012, 9 (03):
  • [50] The mass transport characteristics and performance improvement with the nonuniform block flow channel in a proton exchange membrane fuel cell
    Sun, Lu-Yi
    Lin, Lin
    Zheng, Shao-Fei
    Bai, Ming-Jie
    Lee, Duu-Jong
    Wang, Xiao-Dong
    PHYSICS OF FLUIDS, 2025, 37 (03)