3-dimensional electrode patterning within a microfluidic channel using metal ion implantation

被引:49
作者
Choi, Jae-Woo [1 ,2 ]
Rosset, Samuel [1 ]
Niklaus, Muhamed [1 ]
Adleman, James R. [2 ]
Shea, Herbert [1 ]
Psaltis, Demetri [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Sch Engn, CH-1015 Lausanne, Switzerland
[2] CALTECH, Dept Elect Engn, Pasadena, CA 91125 USA
关键词
DIELECTROPHORESIS; FABRICATION;
D O I
10.1039/b917719a
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The application of electrical fields within a microfluidic channel enables many forms of manipulation necessary for lab-on-a-chip devices. Patterning electrodes inside the microfluidic channel generally requires multi-step optical lithography. Here, we utilize an ion-implantation process to pattern 3D electrodes within a fluidic channel made of polydimethylsiloxane (PDMS). Electrode structuring within the channel is achieved by ion implantation at a 40 degrees angle with a metal shadow mask. The advantages of three-dimensional structuring of electrodes within a fluidic channel over traditional planar electrode designs are discussed. Two possible applications are presented: asymmetric particles can be aligned in any of the three axial dimensions with electro-orientation; colloidal focusing and concentration within a fluidic channel can be achieved through dielectrophoresis. Demonstrations are shown with E. coli, a rod shaped bacteria, and indicate the potential that ion-implanted microfluidic channels have for manipulations in the context of lab-on-a-chip devices.
引用
收藏
页码:783 / 788
页数:6
相关论文
共 31 条
[1]  
[Anonymous], 2008, CRC HDB CHEM PHYS
[2]   Chemical separations by bubble-assisted interphase mass-transfer [J].
Boyd, David A. ;
Adleman, James R. ;
Goodwin, David G. ;
Psaltis, Demetirl .
ANALYTICAL CHEMISTRY, 2008, 80 (07) :2452-2456
[3]   Optical detection of asymmetric bacteria utilizing electro orientation [J].
Choi, Jae-Woo ;
Pu, Allen ;
Psaltis, Demetri .
OPTICS EXPRESS, 2006, 14 (21) :9780-9785
[4]   Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image [J].
Choi, Wonjae ;
Nam, Seong-Won ;
Hwang, Hyundoo ;
Park, Sungsu ;
Park, Je-Kyun .
APPLIED PHYSICS LETTERS, 2008, 93 (14)
[5]   Thermocapillary actuation of droplets on chemically patterned surfaces by programmable microheater arrays [J].
Darhuber, AA ;
Valentino, JP ;
Troian, SM ;
Wagner, S .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (06) :873-879
[6]   Rapid prototyping of microfluidic systems in poly(dimethylsiloxane) [J].
Duffy, DC ;
McDonald, JC ;
Schueller, OJA ;
Whitesides, GM .
ANALYTICAL CHEMISTRY, 1998, 70 (23) :4974-4984
[7]   Integrated microfluidic devices [J].
Erickson, D ;
Li, DQ .
ANALYTICA CHIMICA ACTA, 2004, 507 (01) :11-26
[8]  
Gascoyne P, 2002, LAB CHIP, V2, P70, DOI 10.1039/b110090c
[9]   Fabrication of a dielectrophoretic chip with 3D silicon electrodes [J].
Iliescu, C ;
Xu, GL ;
Samper, V ;
Tay, FEH .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (03) :494-500
[10]   Dynamic manipulation and separation of individual semiconducting and metallic nanowires [J].
Jamshidi, Arash ;
Pauzauskie, Peter J. ;
Schuck, P. James ;
Ohta, Aaron T. ;
Chiou, Pei-Yu ;
Chou, Jeffrey ;
Yang, Peidong ;
Wu, Ming C. .
NATURE PHOTONICS, 2008, 2 (02) :85-89