On the Neighbor Sum Distinguishing Index of Planar Graphs

被引:25
作者
Bonamy, M. [1 ]
Przybylo, J. [2 ]
机构
[1] Univ Bordeaux, CNRS, LaBRI, Talence, France
[2] AGH Univ Sci & Technol, Krakow, Poland
关键词
neighbor sum distinguishing index; planar graph; discharging method; 1-2-3; Conjecture; adjacent strong chromatic index; DISTINGUISHING EDGE COLORINGS; IRREGULARITY STRENGTH;
D O I
10.1002/jgt.22098
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let c be a proper edge coloring of a graph G = (V, E) with integers 1, 2,..., k. Then k >= Delta(G), while Vizing's theorem guarantees that we can take k <= Delta(G) + 1. On the course of investigating irregularities in graphs, it has been conjectured that with only slightly larger k, that is, k = Delta(G) + 2, we could enforce an additional strong feature of c, namely that it attributes distinct sums of incident colors to adjacent vertices in G if only this graph has no isolated edges and is not isomorphic to C-5. We prove the conjecture is valid for planar graphs of sufficiently largemaximum degree. In fact an even stronger statement holds, as the necessary number of colors stemming from the result of Vizing is proved to be sufficient for this family of graphs. Specifically, our main result states that every planar graph G of maximum degree at least 28, which contains no isolated edges admits a proper edge coloring c : E -> {1, 2,..., Delta(G) + 1} such that Sigma(e(sic)u) c(e) not equal Sigma(e(sic)u) c(e) for every edge uv of G. (C) 2016 Wiley Periodicals, Inc.
引用
收藏
页码:669 / 690
页数:22
相关论文
共 35 条
[1]   Degree constrained subgraphs [J].
Addario-Berry, L. ;
Dalal, K. ;
Reed, B. A. .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (07) :1168-1174
[2]   Vertex-colouring edge-weightings [J].
Addario-Berry, Louigi ;
Dalal, Ketan ;
McDiarmid, Colin ;
Reed, Bruce A. ;
Thomason, Andrew .
COMBINATORICA, 2007, 27 (01) :1-12
[3]   IRREGULAR ASSIGNMENTS OF TREES AND FORESTS [J].
AIGNER, M ;
TRIESCH, E .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 1990, 3 (04) :439-449
[4]   r-Strong edge colorings of graphs [J].
Akbari, S. ;
Bidkhori, H. ;
Nosrati, N. .
DISCRETE MATHEMATICS, 2006, 306 (23) :3005-3010
[5]   Combinatorial Nullstellensatz [J].
Alon, N .
COMBINATORICS PROBABILITY & COMPUTING, 1999, 8 (1-2) :7-29
[6]  
[Anonymous], 1987, C MATH SOC J BOLYAI
[7]   Adjacent vertex distinguishing edge-colorings [J].
Balister, P. N. ;
Gyori, E. ;
Lehel, J. ;
Schelp, R. H. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) :237-250
[8]   On the irregularity strength of trees [J].
Bohman, T ;
Kravitz, D .
JOURNAL OF GRAPH THEORY, 2004, 45 (04) :241-254
[9]  
Bonamy M., 2013, P 7 EUR C COMB GRAPH, P313
[10]  
Charollois G., 1988, Courrier de la Nature, P36