Engineering functional quantum algorithms -: art. no. 010302

被引:8
作者
Klappenecker, A [1 ]
Rötteler, M
机构
[1] Texas A&M Univ, Dept Comp Sci, College Stn, TX 77843 USA
[2] Univ Karlsruhe, Forsch Grp Prof Beth, Inst Algorithmen & Kognit Syst, D-76128 Karlsruhe, Germany
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.67.010302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Suppose that a quantum circuit with K elementary gates is known for a unitary matrix U, and assume that U-m is a scalar matrix for some positive integer m. We show that a function of U can be realized on a quantum computer with at most O(mK+m(2)ln m) elementary gates. The functions of U are realized by a generic quantum circuit, which has a particularly simple structure. Among other results, we obtain efficient circuits for the fractional Fourier transform.
引用
收藏
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 1996, P 28 ANN ACM S THEOR
[2]  
[Anonymous], 1960, THEORY MATRICES
[3]   ELEMENTARY GATES FOR QUANTUM COMPUTATION [J].
BARENCO, A ;
BENNETT, CH ;
CLEVE, R ;
DIVINCENZO, DP ;
MARGOLUS, N ;
SHOR, P ;
SLEATOR, T ;
SMOLIN, JA ;
WEINFURTER, H .
PHYSICAL REVIEW A, 1995, 52 (05) :3457-3467
[4]   Quantum gates and circuits [J].
DiVincenzo, DP .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1969) :261-276
[5]  
FERRAR WL, 1951, FINITE MATRICES
[6]  
Horn R. A., 1994, Matrix Analysis
[7]   Quantum computations: algorithms and error correction [J].
Kitaev, AY .
RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (06) :1191-1249
[8]  
Rinehart RF., 1955, AM MATH MONTHLY, V62, P395, DOI DOI 10.1080/00029890.1955.11988651
[9]  
Santhanam B, 1996, IEEE T SIGNAL PROCES, V44, P994, DOI 10.1109/78.492554
[10]  
SHOR PW, 1994, AN S FDN CO, P124