MRI biomarkers in neuro-oncology

被引:65
作者
Smits, Marion [1 ]
机构
[1] Erasmus MC, Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, Rotterdam, Netherlands
关键词
MAGNETIC-RESONANCE-SPECTROSCOPY; APPARENT DIFFUSION-COEFFICIENT; HIGH-GRADE GLIOMA; SUSCEPTIBILITY CONTRAST MRI; DIFFERENTIATING HIGH-GRADE; TUMOR IMAGING PROTOCOL; BRAIN-TUMOR; CONSENSUS RECOMMENDATIONS; PATIENT SURVIVAL; CLINICAL-TRIALS;
D O I
10.1038/s41582-021-00510-y
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
The central role of MRI in neuro-oncology is undisputed. The technique is used, both in clinical practice and in clinical trials, to diagnose and monitor disease activity, support treatment decision-making, guide the use of focused treatments and determine response to treatment. Despite recent substantial advances in imaging technology and image analysis techniques, clinical MRI is still primarily used for the qualitative subjective interpretation of macrostructural features, as opposed to quantitative analyses that take into consideration multiple pathophysiological features. However, the field of quantitative imaging and imaging biomarker development is maturing. The European Imaging Biomarkers Alliance (EIBALL) and Quantitative Imaging Biomarkers Alliance (QIBA) are setting standards for biomarker development, validation and implementation, as well as promoting the use of quantitative imaging and imaging biomarkers by demonstrating their clinical value. In parallel, advanced imaging techniques are reaching the clinical arena, providing quantitative, commonly physiological imaging parameters that are driving the discovery, validation and implementation of quantitative imaging and imaging biomarkers in the clinical routine. Additionally, computational analysis techniques are increasingly being used in the research setting to convert medical images into objective high-dimensional data and define radiomic signatures of disease states. Here, I review the definition and current state of MRI biomarkers in neuro-oncology, and discuss the clinical potential of quantitative image analysis techniques. MRI is an important tool in neuro-oncology but is still predominantly used in a qualitative manner. In this Review, Marion Smits discusses the development of MRI biomarkers for use in neuro-oncology and highlights the clinical potential of quantitative image analysis techniques.
引用
收藏
页码:486 / 500
页数:15
相关论文
共 147 条
[1]   The diagnostic role of diffusional kurtosis imaging in glioma grading and differentiation of gliomas from other intra-axial brain tumours: a systematic review with critical appraisal and meta-analysis [J].
Abdalla, Gehad ;
Dixon, Luke ;
Sanverdi, Eser ;
Machado, Pedro M. ;
Kwong, Joey S. W. ;
Panovska-Griffiths, Jasmina ;
Rojas-Garcia, Antonio ;
Yoneoka, Daisuke ;
Veraart, Jelle ;
Van Cauter, Sofie ;
Abdel-Khalek, Ahmed M. ;
Settein, Magdy ;
Yousry, Tarek ;
Bisdas, Sotirios .
NEURORADIOLOGY, 2020, 62 (07) :791-802
[2]   Imaging Characteristics of Pediatric Diffuse Midline Gliomas with Histone H3 K27M Mutation [J].
Aboian, M. S. ;
Solomon, D. A. ;
Felton, E. ;
Mabray, M. C. ;
Villanueva-Meyer, J. E. ;
Mueller, S. ;
Cha, S. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2017, 38 (04) :795-800
[3]   Magnetic resonance perfusion for differentiating low-grade from high-grade gliomas at first presentation [J].
Abrigo, Jill M. ;
Fountain, Daniel M. ;
Provenzale, James M. ;
Law, Eric K. ;
Kwong, Joey S. W. ;
Hart, Michael G. ;
Tam, Wilson Wai San .
COCHRANE DATABASE OF SYSTEMATIC REVIEWS, 2018, (01)
[4]   Stacked in-plane histology for quantitative validation of non-invasive imaging biomarkers: Application to an infiltrative brain tumour model [J].
Al-Mubarak, H. ;
Vallatos, A. ;
Gallagher, L. ;
Birch, J. L. ;
Gilmour, L. ;
Foster, J. E. ;
Chalmers, A. J. ;
Holmes, W. M. .
JOURNAL OF NEUROSCIENCE METHODS, 2019, 326
[5]  
Alberich-Bayarri A., 2019, ARTIFICIAL INTELLIGE, V10, P119
[6]   Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas [J].
Albert, Nathalie L. ;
Weller, Michael ;
Suchorska, Bogdana ;
Galldiks, Norbert ;
Soffietti, Riccardo ;
Kim, Michelle M. ;
La Fougere, Christian ;
Pope, Whitney ;
Law, Ian ;
Arbizu, Javier ;
Chamberlain, Marc C. ;
Vogelbaum, Michael ;
Ellingson, Ben M. ;
Tonn, Joerg C. .
NEURO-ONCOLOGY, 2016, 18 (09) :1199-1208
[7]   Molecular Subtype Classification in Lower-Grade Glioma with Accelerated DTI [J].
Aliotta, E. ;
Nourzadeh, H. ;
Batchala, P. P. ;
Schiff, D. ;
Lopes, M. B. ;
Druzgal, J. T. ;
Mukherjee, S. ;
Patel, S. H. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (09) :1458-1463
[8]   Automated apparent diffusion coefficient analysis for genotype prediction in lower grade glioma: association with the T2-FLAIR mismatch sign [J].
Aliotta, Eric ;
Dutta, Sunil W. ;
Feng, Xue ;
Tustison, Nicholas J. ;
Batchala, Prem P. ;
Schiff, David ;
Lopes, M. Beatriz ;
Jain, Rajan ;
Druzgal, T. Jason ;
Mukherjee, Sugoto ;
Patel, Sohil H. .
JOURNAL OF NEURO-ONCOLOGY, 2020, 149 (02) :325-335
[9]   Recommended Implementation of Arterial Spin-Labeled Perfusion MRI for Clinical Applications: A Consensus of the ISMRM Perfusion Study Group and the European Consortium for ASL in Dementia [J].
Alsop, David C. ;
Detre, John A. ;
Golay, Xavier ;
Guenther, Matthias ;
Hendrikse, Jeroen ;
Hernandez-Garcia, Luis ;
Lu, Hanzhang ;
MacIntosh, Bradley J. ;
Parkes, Laura M. ;
Smits, Marion ;
van Osch, Matthias J. P. ;
Wang, Danny J. J. ;
Wong, Eric C. ;
Zaharchuk, Greg .
MAGNETIC RESONANCE IN MEDICINE, 2015, 73 (01) :102-116
[10]   Treatment Response Assessment in IDH-Mutant Glioma Patients by Noninvasive 3D Functional Spectroscopic Mapping of 2-Hydroxyglutarate [J].
Andronesi, Ovidiu C. ;
Loebel, Franziska ;
Bogner, Wolfgang ;
Marjanska, Malgorzata ;
Vander Heiden, Matthew G. ;
Iafrate, A. John ;
Dietrich, Jorg ;
Batchelor, Tracy T. ;
Gerstner, Elizabeth R. ;
Kaelin, William G. ;
Chi, Andrew S. ;
Rosen, Bruce R. ;
Cahill, Daniel P. .
CLINICAL CANCER RESEARCH, 2016, 22 (07) :1632-1641