Positive periodic solution to indefinite singular Lienard equation

被引:5
|
作者
Xin, Yun [1 ]
Cheng, Zhibo [2 ,3 ]
机构
[1] Henan Polytech Univ, Coll Comp Sci & Technol, Jiaozuo 454000, Henan, Peoples R China
[2] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[3] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454000, Henan, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Positive periodic solution; Indefinite singularity; Lienard equation; DIFFERENTIAL-EQUATIONS; SUBHARMONIC SOLUTIONS; DUFFING EQUATION; MULTIPLICITY;
D O I
10.1007/s11117-018-0637-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the existence of a positive periodic solution for the following Lienard equation with a indefinite singularity x ''+f(x)x '+b(t)x=p(t), is a T-periodic sign-changing function. The novelty of the present article is that for the first time we show that a indefinite singularity enables the achievement of a new existence criterion of positive periodic solutions through a application of a topological degree theorem by Mawhin. Recent results in the literature are generalized and significantly improved, and we give the existence interval of a positive periodic solution of this equation. At last, an example is given to show applications of the theorems.
引用
收藏
页码:779 / 787
页数:9
相关论文
共 50 条
  • [1] Positive periodic solution for indefinite singular Lienard equation with p-Laplacian
    Zhou, Tiantian
    Du, Bo
    Du, Haiqing
    ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (1)
  • [2] Positive periodic solution to an indefinite singular equation
    Cheng, Zhibo
    Cui, Xiaoxiao
    Cheng, Zhibo (czb_1982@126.com), 1600, Elsevier Ltd (112):
  • [3] Positive periodic solution to an indefinite singular equation
    Cheng, Zhibo
    Cui, Xiaoxiao
    APPLIED MATHEMATICS LETTERS, 2021, 112
  • [4] PERIODIC SOLUTIONS FOR A SINGULAR LIENARD EQUATION WITH INDEFINITE WEIGHT
    Lu, Shiping
    Xue, Runyu
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2019, 54 (01) : 203 - 218
  • [5] Positive periodic solution to indefinite singular Liénard equation
    Yun Xin
    Zhibo Cheng
    Positivity, 2019, 23 : 779 - 787
  • [6] Periodic solutions for Lienard equation with an indefinite singularity
    Lu, Shiping
    Guo, Yuanzhi
    Chen, Lijuan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2019, 45 (542-556) : 542 - 556
  • [7] Positive periodic solution for indefinite singular Liénard equation with p-Laplacian
    Tiantian Zhou
    Bo Du
    Haiqing Du
    Advances in Difference Equations, 2019
  • [8] Existence and uniqueness of a periodic solution to an indefinite attractive singular equation
    Hakl, Robert
    Zamora, Manuel
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2016, 195 (03) : 995 - 1009
  • [9] Existence and uniqueness of a periodic solution to an indefinite attractive singular equation
    Robert Hakl
    Manuel Zamora
    Annali di Matematica Pura ed Applicata (1923 -), 2016, 195 : 995 - 1009
  • [10] Existence and uniqueness of positive periodic solution for φ-Laplacian Lienard equation
    Xin, Yun
    Han, Xuefeng
    Cheng, Zhibo
    BOUNDARY VALUE PROBLEMS, 2014, : 1 - 11