Feasibility of Multimodal MRI-Based Deep Learning Prediction of High Amino Acid Uptake Regions and Survival in Patients With Glioblastoma

被引:9
作者
Jeong, Jeong-Won [1 ,2 ,3 ,4 ,5 ]
Lee, Min-Hee [1 ,2 ,3 ]
John, Flora [1 ,2 ,3 ]
Robinette, Natasha L. [6 ,7 ]
Amit-Yousif, Alit J. [6 ,7 ]
Barger, Geoffrey R. [4 ,7 ]
Mittal, Sandeep [6 ,7 ,8 ,9 ,10 ]
Juhasz, Csaba [1 ,2 ,3 ,4 ,5 ,7 ,8 ]
机构
[1] Wayne State Univ, Sch Med, Dept Pediat, Detroit, MI 48201 USA
[2] Childrens Hosp Michigan, PET Ctr, Detroit, MI 48201 USA
[3] Childrens Hosp Michigan, Translat Imaging Lab, Detroit, MI 48201 USA
[4] Wayne State Univ, Dept Neurol, Detroit, MI 48202 USA
[5] Wayne State Univ, Translat Neurosci Program, Detroit, MI 48202 USA
[6] Wayne State Univ, Dept Oncol, Detroit, MI USA
[7] Karmanos Canc Inst, Detroit, MI 48201 USA
[8] Wayne State Univ, Dept Neurosurg, Detroit, MI 48202 USA
[9] Vrginia Tech, Carillon Sch Med, Roanoke, VA USA
[10] Carillon Clin, Roanoke, VA USA
关键词
glioblastoma; multimodal MRI; positron emission tomography; amino acid; tryptophan; deep learning; BRAIN-TUMORS; PET; TRYPTOPHAN; PERFUSION; TISSUE;
D O I
10.3389/fneur.2019.01305
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Purpose: Amino acid PET has shown high accuracy for the diagnosis and prognostication of malignant gliomas, however, this imaging modality is not widely available in clinical practice. This study explores a novel end-to-end deep learning framework ("U-Net") for its feasibility to detect high amino acid uptake glioblastoma regions (i.e., metabolic tumor volume) using clinical multimodal MRI sequences. Methods: T2, fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient map, contrast-enhanced T1, and alpha-[C-11]-methyl-L-tryptophan (AMT)-PET images were analyzed in 21 patients with newly-diagnosed glioblastoma. U-Net system with data augmentation was implemented to deeply learn non-linear voxel-wise relationships between intensities of multimodal MRI as the input and metabolic tumor volume from AMT-PET as the output. The accuracy of the MRI- and PET-based volume measures to predict progression-free survival was tested. Results: In the augmented dataset using all four MRI modalities to investigate the upper limit of U-Net accuracy in the full study cohort, U-Net achieved high accuracy (sensitivity/specificity/positive predictive value [PPV]/negative predictive value [NPV]: 0.85/1.00/0.81/1.00, respectively) to predict PET-defined tumor volumes. Exclusion of FLAIR from the MRI input set had a strong negative effect on sensitivity (0.60). In repeated hold out validation in randomly selected subjects, specificity and NPV remained high (1.00), but mean sensitivity (0.62), and PPV (0.68) were moderate. AMT-PET-learned MRI tumor volume from this U-net model within the contrast-enhancing volume predicted 6-month progression-free survival with 0.86/0.63 sensitivity/specificity. Conclusions: These data indicate the feasibility of PET-based deep learning for enhanced pretreatment glioblastoma delineation and prognostication by clinical multimodal MRI.
引用
收藏
页数:8
相关论文
共 30 条
[1]   Social-Sensor Cloud Service Selection [J].
Aamir, Tooba ;
Bouguettaya, Athman ;
Dong, Hai ;
Erradi, Abdelkarim ;
Hadjidj, Rachid .
2017 IEEE 24TH INTERNATIONAL CONFERENCE ON WEB SERVICES (ICWS 2017), 2017, :508-515
[2]   Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas [J].
Albert, Nathalie L. ;
Weller, Michael ;
Suchorska, Bogdana ;
Galldiks, Norbert ;
Soffietti, Riccardo ;
Kim, Michelle M. ;
La Fougere, Christian ;
Pope, Whitney ;
Law, Ian ;
Arbizu, Javier ;
Chamberlain, Marc C. ;
Vogelbaum, Michael ;
Ellingson, Ben M. ;
Tonn, Joerg C. .
NEURO-ONCOLOGY, 2016, 18 (09) :1199-1208
[3]  
[Anonymous], 2017, ARXIV171204621CSCV
[4]   Radiogenomic analysis of hypoxia pathway is predictive of overall survival in Glioblastoma [J].
Beig, Niha ;
Patel, Jay ;
Prasanna, Prateek ;
Hill, Virginia ;
Gupta, Amit ;
Correa, Ramon ;
Bera, Kaustav ;
Singh, Salendra ;
Partovi, Sasan ;
Varadan, Vinay ;
Ahluwalia, Manmeet ;
Madabhushi, Anant ;
Tiwari, Pallavi .
SCIENTIFIC REPORTS, 2018, 8
[5]   Automatic lesion detection and segmentation of 18F-FET PET in gliomas: A full 3D U-Net convolutional neural network study [J].
Blanc-Durand, Paul ;
Van der Gucht, Axel ;
Schaefer, Niklaus ;
Itti, Emmanuel ;
Prior, John O. .
PLOS ONE, 2018, 13 (04)
[6]   Technical Note: U-net-generated synthetic CT images for magnetic resonance imaging-only prostate intensity-modulated radiation therapy treatment planning [J].
Chen, Shupeng ;
Qin, An ;
Zhou, Dingyi ;
Yan, Di .
MEDICAL PHYSICS, 2018, 45 (12) :5659-5665
[7]   Using deep learning to segment breast and fibroglandular tissue in MRI volumes [J].
Dalmis, Mehmet Ufuk ;
Litjens, Geert ;
Holland, Katharina ;
Setio, Arnaud ;
Mann, Ritse ;
Karssemeijer, Nico ;
Gubern-Merida, Albert .
MEDICAL PHYSICS, 2017, 44 (02) :533-546
[8]   Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas [J].
Dhermain, Frederic G. ;
Hau, Peter ;
Lanfermann, Heinrich ;
Jacobs, Andreas H. ;
van den Bent, Martin .
LANCET NEUROLOGY, 2010, 9 (09) :906-920
[9]   Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis [J].
Dunet, Vincent ;
Pomoni, Anastasia ;
Hottinger, Andreas ;
Nicod-Lalonde, Marie ;
Prior, John O. .
NEURO-ONCOLOGY, 2016, 18 (03) :426-434
[10]   Value of 11C-methionine PET in imaging brain tumours and metastases [J].
Glaudemans, Andor W. J. M. ;
Enting, Roelien H. ;
Heesters, Mart A. A. M. ;
Dierckx, Rudi A. J. O. ;
van Rheenen, Ronald W. J. ;
Walenkamp, Annemiek M. E. ;
Slart, Riemer H. J. A. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2013, 40 (04) :615-635