A new method for bounding rates of convergence of empirical spectral distributions

被引:17
作者
Chatterjee, S [1 ]
Bose, A
机构
[1] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[2] ISI, Theoret Stat & Math Unit, Kolkata 700108, W Bengal, India
基金
美国国家科学基金会;
关键词
large dimensional random matrix; eigenvalues; limiting spectral distribution; Marcenko-Pastur law; semicircular law; Wigner matrix; sample variance covariance matrix; Toeplitz matrix; moment method; Stieltjes transform; random probability; normal approximation;
D O I
10.1007/s10959-004-0587-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The probabilistic properties of eigenvalues of random matrices whose dimension increases indefinitely has received considerable attention. One important aspect is the existence and identification of the limiting spectral distribution (LSD) of the empirical distribution of the eigenvalues. When the LSD exists, it is useful to know the rate at which the convergence holds. The main method to establish such rates is the use of Stieltjes transform. In this article we introduce a new technique of bounding the rates of convergence to the LSD. We show how our results apply to specific cases such as the Wigner matrix and the Sample Covariance matrix.
引用
收藏
页码:1003 / 1019
页数:17
相关论文
共 52 条
[1]  
[Anonymous], 1963, PROBABILITIES ALGEBR
[2]  
[Anonymous], 1985, TEOR VEROYATNOST PRI
[3]  
[Anonymous], 1984, WILEY SERIES PROBABI
[4]   WIGNERS SEMICIRCLE LAW FOR EIGENVALUES OF RANDOM MATRICES [J].
ARNOLD, L .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1971, 19 (03) :191-&
[6]  
Bai ZD, 1999, STAT SINICA, V9, P611
[7]   A note on the convergence rate of the spectral distributions of large random matrices [J].
Bai, ZD ;
Miao, BQ ;
Tsay, JS .
STATISTICS & PROBABILITY LETTERS, 1997, 34 (01) :95-101
[8]   CONVERGENCE TO THE SEMICIRCLE LAW [J].
BAI, ZD ;
YIN, YQ .
ANNALS OF PROBABILITY, 1988, 16 (02) :863-875