Unpredictable bias when using the missing indicator method or complete case analysis for missing confounder values: an empirical example

被引:122
作者
Knol, Mirjam J. [1 ,2 ]
Janssen, Kristel J. M. [1 ]
Donders, A. Rogier T. [3 ]
Egberts, Antoine C. G. [2 ,4 ]
Heerdink, E. Rob [2 ]
Grobbee, Diederick E. [1 ]
Moons, Karel G. M. [1 ]
Geerlings, Mirjam I. [1 ]
机构
[1] Univ Med Ctr Utrecht, Julius Ctr Hlth Sci & Primary Care, NL-3508 GA Utrecht, Netherlands
[2] Univ Utrecht, Utrecht Inst Pharmaceut Sci, Dept Pharmacoepidemiol & Pharmacotherapy, Utrecht, Netherlands
[3] Radboud Univ Nijmegen, Med Ctr, Dept Epidemiol Biostat & HTA, NL-6525 ED Nijmegen, Netherlands
[4] Univ Med Ctr Utrecht, Dept Clin Pharm, NL-3508 GA Utrecht, Netherlands
关键词
Missing; Confounder; Etiologic; Indicator method; Complete case; Multiple imputation; MULTIPLE IMPUTATION; REGRESSION;
D O I
10.1016/j.jclinepi.2009.08.028
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Objective: Missing indicator method (MIM) and complete case analysis (CC) are frequently used to handle missing confounder data. Using empirical data, we demonstrated the degree and direction of bias in the effect estimate when using these methods compared with multiple imputation (MI). Study Design and Setting: From a cohort study, we selected an exposure (marital status), outcome (depression), and confounders (age, sex, and income). Missing values in "income" were created according to different patterns of missingness: missing values were created completely at random and depending on exposure and outcome values. Percentages of missing values ranged from 2.5% to 30%. Results: When missing values were completely random, MIM gave an overestimation of the odds ratio, whereas CC and MI gave unbiased results. MIM and CC gave under- or overestimations when missing values depended on observed values. Magnitude and direction of bias depended on how the missing values were related to exposure and outcome. Bias increased with increasing percentage of missing values. Conclusion: MIM should not be used in handling missing confounder data because it gives unpredictable bias of the odds ratio even with small percentages of missing values. CC can be used when missing values are completely random, but it gives loss of statistical power. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:728 / 736
页数:9
相关论文
共 30 条
[1]  
[Anonymous], 1993, Composite International Diagnostic Interview (CIDI)
[2]  
[Anonymous], 2006, R LANG ENV STAT COMP
[3]  
[Anonymous], 1983, volume 1 of Handbook of Survey Research
[4]   Multiple imputation of baseline data in the cardiovascular health study [J].
Arnold, AM ;
Kronmal, RA .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2003, 157 (01) :74-84
[5]   Missing covariate data within cancer prognostic studies: a review of current reporting and proposed guidelines [J].
Burton, A ;
Altman, DG .
BRITISH JOURNAL OF CANCER, 2004, 91 (01) :4-8
[6]   A COMPARISON OF ANALYTIC METHODS FOR NONRANDOM MISSINGNESS OF OUTCOME DATA [J].
CRAWFORD, SL ;
TENNSTEDT, SL ;
MCKINLAY, JB .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 1995, 48 (02) :209-219
[7]   Review: A gentle introduction to imputation of missing values [J].
Donders, A. Rogier T. ;
van der Heijden, Geert J. M. G. ;
Stijnen, Theo ;
Moons, Karel G. M. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (10) :1087-1091
[8]  
Goldstein AM, 2000, CANCER EPIDEM BIOMAR, V9, P889
[9]   Bias arising from missing data in predictive models [J].
Gorelick, Marc H. .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2006, 59 (10) :1115-1123
[10]   A critical look at methods for handling missing covariates in epidemiologic regression analyses [J].
Greenland, S ;
Finkle, WD .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 1995, 142 (12) :1255-1264