APPROXIMATE PROPER EFFICIENCY ON REAL LINEAR VECTOR SPACES

被引:0
作者
Kiyani, Elham [1 ]
Soleimani-Damaneh, Majid [1 ,2 ,3 ]
机构
[1] Univ Tehran, Coll Sci, Sch Math Stat & Comp Sci, Tehran, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[3] Aalto Univ, Dept Informat & Serv Econ, Sch Econ, FI-00076 Helsinki, Finland
来源
PACIFIC JOURNAL OF OPTIMIZATION | 2014年 / 10卷 / 04期
关键词
vector optimization; approximate (weak/proper) efficiency; algebraic interior; vectorial closure; separation theorems; OPTIMIZATION PROBLEMS; EPSILON-EFFICIENCY; DUALITY; SCALARIZATION;
D O I
暂无
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of the paper is presenting necessary and sufficient conditions to characterize the approximate (weak/proper) efficient solutions of vector optimization problems under real linear vector spaces without any particular topology. To this end, we use different scalarization approaches based upon the dual cone, Gerstewitz's scalarization function, and the Lagrangian mapping notions. Since there is not any topology here, we utilize some algebraic concepts instead of topological (relative) interior, closure, and dual cone. Also, some separation and alternative theorems play a fundamental role in establishing the main results.
引用
收藏
页码:715 / 734
页数:20
相关论文
共 40 条