Chemoselective Hydrogenolysis of Tetrahydropyran-2-methanol to 1,6-Hexanediol over Rhenium-Modified Carbon-Supported Rhodium Catalysts

被引:160
作者
Chen, Kaiyou [3 ]
Koso, Shuichi [3 ]
Kubota, Takeshi [1 ]
Nakagawa, Yoshinao [2 ,3 ]
Tomishige, Keiichi [2 ,3 ]
机构
[1] Shimane Univ, Dept Mat Sci, Matsue, Shimane 6908504, Japan
[2] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton Satellite MANA, Tsukuba, Ibaraki 3058573, Japan
[3] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058573, Japan
关键词
biomass; heterogeneous catalysis; hydrogenolysis; rhenium; rhodium; ABSORPTION FINE-STRUCTURE; ION-EXCHANGE-RESIN; HIGH-TEMPERATURE; GLYCEROL HYDROGENOLYSIS; HYDROGENATION; RH/SIO2; BIOMASS; TRANSFORMATION; PERFORMANCE; ADSORPTION;
D O I
10.1002/cctc.201000018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modification of Rh/C with Re species enabled chemoselective hydrogenolysis of tetrahydropyran-2-methanol to 1,6-hexanediol. In particular, the Rh-ReOx/C (Re/Rh ratio=0.25) catalyst gave a high yield of 1,6-hexanediol (84%) and showed a very low activity for overhydrogenolysis to 1-hexanol. Using the same catalyst in the hydrogenolysis of tetrahydrofurfuryl alco-hol also gave a high yield of 1,5-pentanediol (94%). Characterization results indicate the formation of ReOx clusters attached on the surface of Rh metal particles. This can cause the synergy between ReOx, and Rh, and the tetrahydropyran-2-methanol hydrogenolysis proceeds on the interface between Rh metal surface and attached ReOx, species.
引用
收藏
页码:547 / 555
页数:9
相关论文
共 50 条
[1]   Real-space multiple-scattering calculation and interpretation of x-ray-absorption near-edge structure [J].
Ankudinov, AL ;
Ravel, B ;
Rehr, JJ ;
Conradson, SD .
PHYSICAL REVIEW B, 1998, 58 (12) :7565-7576
[2]   KINETIC-STUDIES OF THE REACTIONS OF KETOSES AND ALDOSES IN WATER AT HIGH-TEMPERATURE .3. MECHANISM OF FORMATION OF 2-FURALDEHYDE FROM D-XYLOSE [J].
ANTAL, MJ ;
LEESOMBOON, T ;
MOK, WS ;
RICHARDS, GN .
CARBOHYDRATE RESEARCH, 1991, 217 :71-85
[3]   Simple Chemical Transformation of Lignocellulosic Biomass into Furans for Fuels and Chemicals [J].
Binder, Joseph B. ;
Raines, Ronald T. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (05) :1979-1985
[4]   CHEMICAL INTERMEDIATES FROM FURFURAL [J].
CASS, OW .
INDUSTRIAL AND ENGINEERING CHEMISTRY, 1948, 40 (02) :216-219
[5]   Catalytic performance and catalyst structure of nickel-magnesia catalysts for CO2 reforming of methane [J].
Chen, YG ;
Tomishige, K ;
Yokoyama, K ;
Fujimoto, K .
JOURNAL OF CATALYSIS, 1999, 184 (02) :479-490
[6]  
Chheda J.N., 2007, Angew. Chem, V119, P7298
[7]   Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals [J].
Chheda, Juben N. ;
Huber, George W. ;
Dumesic, James A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (38) :7164-7183
[8]   CRITERIA FOR AUTOMATIC X-RAY ABSORPTION FINE-STRUCTURE BACKGROUND REMOVAL [J].
COOK, JW ;
SAYERS, DE .
JOURNAL OF APPLIED PHYSICS, 1981, 52 (08) :5024-5031
[9]   Chemical routes for the transformation of biomass into chemicals [J].
Corma, Avelino ;
Iborra, Sara ;
Velty, Alexandra .
CHEMICAL REVIEWS, 2007, 107 (06) :2411-2502
[10]  
Daniel W., 2003, J MOL CATAL A-CHEM, V519, P204