Discrimination and clustering for multivariate time series

被引:209
|
作者
Kakizawa, Y [1 ]
Shumway, RH
Taniguchi, M
机构
[1] Hokkaido Univ, Fac Econ, Sapporo, Hokkaido 060, Japan
[2] Univ Calif Davis, Div Stat, Davis, CA 95616 USA
[3] Osaka Univ, Dept Math Sci, Toyonaka, Osaka 560, Japan
关键词
Chernoff; divergence; Kullback-Leibler; minimum discrimination information; robustness; seismology; spectral analysis;
D O I
10.2307/2669629
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Minimum discrimination information provides a useful generalization of likelihood methodology for classification and clustering of multivariate time series. Discrimination between different classes of multivariate time series that can be characterized by differing covariance or spectral structures is of importance in applications occurring in the analysis of geophysical and medical time series data. For discrimination between such multivariate series, Kullback-Leibler discrimination information and the Chernoff information measure are developed for the multivariate non-Gaussian case. Asymptotic error rates and limiting distributions are given for a generalized spectral disparity measure that includes the foregoing criteria as special cases. Applications to problems of clustering and classifying earthquakes and mining explosions are given.
引用
收藏
页码:328 / 340
页数:13
相关论文
共 50 条
  • [1] Tennis Multivariate Time Series Clustering
    Skublewska-Paszkowska, Maria
    Karczmarek, Pawel
    Lukasik, Edyta
    IEEE CIS INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS 2021 (FUZZ-IEEE), 2021,
  • [2] Spider algorithm for clustering multivariate time series
    Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503, Japan
    WSEAS Trans. Inf. Sci. Appl., 2006, 3 (485-492):
  • [3] Clustering multivariate time-series data
    Singhal, A
    Seborg, DE
    JOURNAL OF CHEMOMETRICS, 2005, 19 (08) : 427 - 438
  • [4] An ensemble solution for multivariate time series clustering
    Vazquez, Iago
    Villar, Jose R.
    Sedano, Javier
    de la Cal, Enrique
    Simic, Svetlana
    NEUROCOMPUTING, 2021, 457 (457) : 182 - 192
  • [5] An Efficient Clustering Algorithm for Multivariate Time Series
    Zhou, Da-Zhuo
    Zhang, Bo
    EBM 2010: INTERNATIONAL CONFERENCE ON ENGINEERING AND BUSINESS MANAGEMENT, VOLS 1-8, 2010, : 5190 - 5193
  • [6] Clustering of multivariate time-series data
    Singhal, A
    Seborg, DE
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 3931 - 3936
  • [7] A Preliminary Study on Multivariate Time Series Clustering
    Vaquez, Iago
    Villar, Jose R.
    Sedano, Javier
    Simic, Svetlana
    14TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING MODELS IN INDUSTRIAL AND ENVIRONMENTAL APPLICATIONS (SOCO 2019), 2020, 950 : 473 - 480
  • [8] MULTIVARIATE TIME-SERIES DISCRIMINATION IN THE SPECTRAL DOMAIN
    RAWLINGS, RR
    ECKARDT, MJ
    BEGLEITER, H
    COMPUTERS AND BIOMEDICAL RESEARCH, 1984, 17 (04): : 352 - 361
  • [9] Clustering multivariate time series by genetic multiobjective optimization
    Bandyopadhyay S.
    Baragona R.
    Maulik U.
    METRON, 2010, 68 (2) : 161 - 183
  • [10] A Fuzzy Clustering Model for Multivariate Spatial Time Series
    Renato Coppi
    Pierpaolo D’Urso
    Paolo Giordani
    Journal of Classification, 2010, 27 : 54 - 88