Computer Aided Diagnosis of Mammographic Tissue Using Shapelets in Quaternionic Representation

被引:3
作者
Apostolopoulos, G. [1 ]
Koutras, A. [1 ,2 ]
Christoyianni, I. [1 ]
Dermatas, E. [1 ]
机构
[1] Univ Patras, Elect & Comp Engn Dept, Wired Commun Lab, Patras 26500, Greece
[2] Tech Educ Inst Western Greece, Informat & Mass Media Dept, Patras, Greece
来源
XIV MEDITERRANEAN CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING AND COMPUTING 2016 | 2016年 / 57卷
关键词
Shapelets; quaternion; breast cancer; computer-aided diagnosis (CAD); feature extraction; BREAST-CANCER; MASSES;
D O I
10.1007/978-3-319-32703-7_45
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper a robust regions-of-suspicion (ROS) diagnosis system on mammograms, recognizing all types of abnormalities is presented and evaluated. A new type of descriptors, based on Shapelet decomposition, estimate the source images that generate the observed ROS in mammograms. The Shapelet decomposition coefficients can be used to efficiently detect ROS areas using a new classifier base on quaternionic representation. Extensive experiments using the Mammographic Image Analysis Society (MIAS) database have shown high recognition accuracy over 86% for all kinds of breast, with less computational cost.
引用
收藏
页码:222 / 227
页数:6
相关论文
共 50 条
  • [41] Computer-aided diagnosis in screening mammography
    Bick, U
    RADIOLOGE, 1996, 36 (01): : 72 - 80
  • [42] Performance of computer-aided diagnosis in the interpretation of lesions on breast sonography
    Horsch, K
    Giger, ML
    Vyborny, CJ
    Venta, LA
    ACADEMIC RADIOLOGY, 2004, 11 (03) : 272 - 280
  • [43] Perceptual challenges to computer-aided diagnosis
    Jiang, Yulei
    HUMAN VISION AND ELECTRONIC IMAGING XVII, 2012, 8291
  • [44] Microcalcification detection system for computer aided diagnosis
    Kang, HK
    Kim, SM
    Ro, YM
    CISST '05: PROCEEDINGS OF THE 2005 INTERNATIONAL CONFERENCE ON IMAGING SCIENCE, SYSTEMS, AND TECHNOLOGY: COMPUTER GRAPHICS, 2005, : 237 - 243
  • [45] Ultrasonic Multi-Feature Analysis Procedure for Computer-Aided Diagnosis of Solid Breast Lesions
    Alam, S. Kaisar
    Feleppa, Ernest J.
    Rondeau, Mark
    Kalisz, Andrew
    Garra, Brian S.
    ULTRASONIC IMAGING, 2011, 33 (01) : 17 - 38
  • [46] A Review of Computer-Aided Breast Cancer Diagnosis Using Sequential Mammograms
    Loizidou, Kosmia
    Skouroumouni, Galateia
    Nikolaou, Christos
    Pitris, Costas
    TOMOGRAPHY, 2022, 8 (06) : 2874 - 2892
  • [47] A review of the current state of the computer-aided diagnosis (CAD) systems for breast cancer diagnosis
    Guo, Zicheng
    Xie, Jiping
    Wan, Yi
    Zhang, Min
    Qiao, Liang
    Yu, Jiaxuan
    Chen, Sijing
    Li, Bingxin
    Yao, Yongqiang
    OPEN LIFE SCIENCES, 2022, 17 (01): : 1600 - 1611
  • [48] Standalone computer-aided detection compared to radiologists' performance for the detection of mammographic masses
    Hupse, Rianne
    Samulski, Maurice
    Lobbes, Marc
    den Heeten, Ard
    Imhof-Tas, Mechli W.
    Beijerinck, David
    Pijnappel, Ruud
    Boetes, Carla
    Karssemeijer, Nico
    EUROPEAN RADIOLOGY, 2013, 23 (01) : 93 - 100
  • [49] Computer-aided Classification of Mammographic Masses Using the Deep Learning Technology: A Preliminary Study
    Qiu, Yuchen
    Yan, Shiju
    Tan, Maxine
    Cheng, Samuel
    Liu, Hong
    Zheng, Bin
    MEDICAL IMAGING 2016: COMPUTER-AIDED DIAGNOSIS, 2015, 9785
  • [50] Computer-aided diagnosis of mammographic masses based on a supervised content-based image retrieval approach
    Tsochatzidis, Lazaros
    Zagoris, Konstantinos
    Arikidis, Nikolaos
    Karahaliou, Anna
    Costaridou, Lena
    Pratikakis, Ioannis
    PATTERN RECOGNITION, 2017, 71 : 106 - 117