High-Entropy Layered Oxide Cathodes for Sodium-Ion Batteries

被引:394
作者
Zhao, Chenglong [1 ,2 ]
Ding, Feixiang [1 ,2 ]
Lu, Yaxiang [1 ,2 ]
Chen, Liquan [1 ]
Hu, Yong-Sheng [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condensed Matter Phys,Inst Phys, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Ctr Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Yangtze River Delta Phys Res Ctr Co Ltd, Liyang 213300, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
cathode materials; high-entropy composition; O3-type structure; P3-type structure; sodium-ion batteries; HIGH-PERFORMANCE CATHODE; ELECTRODE MATERIALS; ANIONIC REDOX; HIGH-CAPACITY; NA3NI2SBO6; O3-TYPE; NACOO2;
D O I
10.1002/anie.201912171
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Material innovation on high-performance Na-ion cathodes and the corresponding understanding of structural chemistry still remain a challenge. Herein, we report a new concept of high-entropy strategy to design layered oxide cathodes for Na-ion batteries. An example of layered O3-type NaNi0.12Cu0.12Mg0.12Fe0.15Co0.15Mn0.1Ti0.1Sn0.1Sb0.04O2 has been demonstrated, which exhibits the longer cycling stability (ca. 83 % of capacity retention after 500 cycles) and the outstanding rate capability (ca. 80 % of capacity retention at the rate of 5.0 C). A highly reversible phase-transition behavior between O3 and P3 structures occurs during the charge-discharge process, and importantly, this behavior is delayed with more than 60 % of the total capacity being stored in O3-type region. Possible mechanism can be attributed to the multiple transition-metal components in this high-entropy material which can accommodate the changes of local interactions during Na+ (de)intercalation. This strategy opens new insights into the development of advanced cathode materials.
引用
收藏
页码:264 / 269
页数:6
相关论文
共 57 条
[1]   Structural and electrochemical analysis of Zn doped Na3Ni2SbO6 cathode for Na-ion battery [J].
Aguesse, Frederic ;
Lopez del Amo, Juan-Miguel ;
Otaegui, Laida ;
Goikolea, Eider ;
Rojo, Teofilo ;
Singh, Gurpreet .
JOURNAL OF POWER SOURCES, 2016, 336 :186-195
[2]  
[Anonymous], 2018, Angew. Chem.
[3]  
[Anonymous], 2013, ANGEW CHEM INT EDIT
[4]   Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na2/3Mn1-yZnyO2 (0 < y < 0.23) [J].
Bai, Xue ;
Sathiya, Mariyappan ;
Mendoza-Sanchez, Beatriz ;
Iadecola, Antonella ;
Vergnet, Jean ;
Dedryvere, Remi ;
Saubanere, Matthieu ;
Abakumov, Artem M. ;
Rozier, Patrick ;
Tarascon, Jean-Marie .
ADVANCED ENERGY MATERIALS, 2018, 8 (32)
[5]   The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies [J].
Bauer, Alexander ;
Song, Jie ;
Vail, Sean ;
Pan, Wei ;
Barker, Jerry ;
Lu, Yuhao .
ADVANCED ENERGY MATERIALS, 2018, 8 (17)
[6]   Room temperature lithium superionic conductivity in high entropy oxides [J].
Berardan, D. ;
Franger, S. ;
Meena, A. K. ;
Dragoe, N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (24) :9536-9541
[7]   Honeycomb-layer structured Na3Ni2BiO6 as a high voltage and long life cathode material for sodiumion batteries [J].
Bhange, Deu S. ;
Ali, Ghulam ;
Kim, Dong-Hyun ;
Anang, Daniel A. ;
Shin, Tae Joo ;
Kim, Min-Gyu ;
Kang, Yong-Mook ;
Chung, Kyung Yoon ;
Nam, Kyung-Wan .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (03) :1300-1310
[8]   β-NaMnO2: A High-Performance Cathode for Sodium-Ion Batteries [J].
Billaud, Juliette ;
Clement, Raphaele J. ;
Armstrong, A. Robert ;
Canales-Vazquez, Jesus ;
Rozier, Patrick ;
Grey, Clare P. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (49) :17243-17248
[9]   STUDY OF THE NAXCRO2 AND NAXNIO2 SYSTEMS BY ELECTROCHEMICAL DESINTERCALATION [J].
BRACONNIER, JJ ;
DELMAS, C ;
HAGENMULLER, P .
MATERIALS RESEARCH BULLETIN, 1982, 17 (08) :993-1000
[10]   Microstructural development in equiatomic multicomponent alloys [J].
Cantor, B ;
Chang, ITH ;
Knight, P ;
Vincent, AJB .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2004, 375 :213-218