COVID-19 classification of X-ray images using deep neural networks

被引:35
作者
Keidar, Daphna [1 ]
Yaron, Daniel [2 ]
Goldstein, Elisha [3 ]
Shachar, Yair [4 ]
Blass, Ayelet [2 ]
Charbinsky, Leonid [5 ]
Aharony, Israel [5 ]
Lifshitz, Liza [2 ,5 ]
Lumelsky, Dimitri [5 ]
Neeman, Ziv [5 ]
Mizrachi, Matti [6 ,7 ]
Hajouj, Majd [6 ,7 ]
Eizenbach, Nethanel [6 ,7 ]
Sela, Eyal [6 ,7 ]
Weiss, Chedva S. [8 ]
Levin, Philip [8 ]
Benjaminov, Ofer [8 ]
Bachar, Gil N. [9 ,10 ]
Tamir, Shlomit [9 ,10 ]
Rapson, Yael [9 ,10 ]
Suhami, Dror [9 ,10 ]
Atar, Eli [9 ,10 ]
Dror, Amiel A. [6 ,7 ]
Bogot, Naama R. [8 ]
Grubstein, Ahuva [9 ,10 ]
Shabshin, Nogah [5 ]
Elyada, Yishai M. [11 ]
Eldar, Yonina C. [2 ]
机构
[1] Swiss Fed Inst Technol, Dept Comp Sci, Ramistr 101, CH-8092 Zurich, Switzerland
[2] Weizmann Inst Sci, Dept Math & Comp Sci, Rehovot, Israel
[3] Weizmann Inst Sci, Bioinformat Unit, Life Sci Core Facil, Rehovot, Israel
[4] Eyeway Vis Ltd, Yoni Netanyahu St 3, Or Yehuda, Israel
[5] HaEmek Med Ctr, Dept Radiol, Afula, Israel
[6] Galilee Med Ctr, Dept Otolaryngol Head & Neck Surg, Nahariyya, Israel
[7] Bar Ilan Univ, Azrieli Fac Med, Safed, Israel
[8] Shaare Zedek Med Ctr, Cardiothorac Imaging Unit, Jerusalem, Israel
[9] Rabin Med Ctr, Dept Radiol, Jabotinsky Rd 39, Petah Tiqwa, Israel
[10] Tel Aviv Univ, Sakler Sch Med, Ramat Aviv, Israel
[11] Mobileye Vis Technol Ltd, Hartom 13, Jerusalem, Israel
关键词
COVID-19; X-rays; Machine learning; Radiography; Thoracic;
D O I
10.1007/s00330-021-08050-1
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in diagnosis and monitoring of patients with COVID-19. We propose a deep learning model for detection of COVID-19 from CXRs, as well as a tool for retrieving similar patients according to the model's results on their CXRs. For training and evaluating our model, we collected CXRs from inpatients hospitalized in four different hospitals. Methods In this retrospective study, 1384 frontal CXRs, of COVID-19 confirmed patients imaged between March and August 2020, and 1024 matching CXRs of non-COVID patients imaged before the pandemic, were collected and used to build a deep learning classifier for detecting patients positive for COVID-19. The classifier consists of an ensemble of pre-trained deep neural networks (DNNS), specifically, ReNet34, ReNet50, ReNet152, and vgg16, and is enhanced by data augmentation and lung segmentation. We further implemented a nearest-neighbors algorithm that uses DNN-based image embeddings to retrieve the images most similar to a given image. Results Our model achieved accuracy of 90.3%, (95% CI: 86.3-93.7%) specificity of 90% (95% CI: 84.3-94%), and sensitivity of 90.5% (95% CI: 85-94%) on a test dataset comprising 15% (350/2326) of the original images. The AUC of the ROC curve is 0.96 (95% CI: 0.93-0.97). Conclusion We provide deep learning models, trained and evaluated on CXRs that can assist medical efforts and reduce medical staff workload in handling COVID-19.
引用
收藏
页码:9654 / 9663
页数:10
相关论文
共 32 条
[1]  
Abdollahi B., 2020, Deep learners and deep learner descriptors for medical applications, P167, DOI DOI 10.1007/978-3-030-42750-4_6
[2]  
[Anonymous], 2020, Recommendations for the use of Chest Radiography and Computed Tomography (CT) for Suspected COVID-19 Infection
[3]   False-negative results of initial RT-PCR assays for COVID-19: A systematic review [J].
Arevalo-Rodriguez, Ingrid ;
Buitrago-Garcia, Diana ;
Simancas-Racines, Daniel ;
Zambrano-Achig, Paula ;
Del Campo, Rosa ;
Ciapponi, Agustin ;
Sued, Omar ;
Martinez-Garcia, Laura ;
Rutjes, Anne W. ;
Low, Nicola ;
Bossuyt, Patrick M. ;
Perez-Molina, Jose A. ;
Zamora, Javier .
PLOS ONE, 2020, 15 (12)
[4]  
Bae J., 2020, ARXIV PREPRINT ARXIV
[5]   Comparing different deep learning architectures for classification of chest radiographs [J].
Bressem, Keno K. ;
Adams, Lisa C. ;
Erxleben, Christoph ;
Hamm, Bernd ;
Niehues, Stefan M. ;
Vahldiek, Janis L. .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]  
Cohen JP., 2020, COVID 19 IMAGE DATA, V1, P1, DOI DOI 10.59275/J.MELBA.2020-48G7
[7]  
DeGrave Alex J, 2020, medRxiv, DOI 10.1101/2020.09.13.20193565
[8]   Sensitivity of Chest CT for COVID-19: Comparison to RT-PCR [J].
Fang, Yicheng ;
Zhang, Huangqi ;
Xie, Jicheng ;
Lin, Minjie ;
Ying, Lingjun ;
Pang, Peipei ;
Ji, Wenbin .
RADIOLOGY, 2020, 296 (02) :E115-E117
[9]   The Unreasonable Effectiveness of Data [J].
Halevy, Alon ;
Norvig, Peter ;
Pereira, Fernando .
IEEE INTELLIGENT SYSTEMS, 2009, 24 (02) :8-12
[10]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778