共 50 条
Low-Energy Electrochemical Carbon Dioxide Capture Based on a Biological Redox Proton Carrier
被引:34
作者:
Xie, Heping
[1
,2
]
Jiang, Wenchuan
[1
,2
]
Liu, Tao
[1
]
Wu, Yifan
[2
,3
]
Wang, Yufei
[3
]
Chen, Bin
[2
]
Niu, Dawen
[3
]
Liang, Bin
[3
]
机构:
[1] Sichuan Univ, Inst New Energy & Low Carbon Technol, Chengdu 610065, Peoples R China
[2] Shenzhen Univ, Inst Deep Earth Sci & Green Energy, Guangdong Prov Key Lab Deep Earth Sci & Geotherma, Shenzhen 518606, Peoples R China
[3] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Peoples R China
来源:
CELL REPORTS PHYSICAL SCIENCE
|
2020年
/
1卷
/
05期
基金:
中国国家自然科学基金;
关键词:
CO2;
CAPTURE;
FLUE-GAS;
SEPARATION;
MEMBRANE;
ADSORPTION;
RELEASE;
D O I:
10.1016/j.xcrp.2020.100046
中图分类号:
O6 [化学];
学科分类号:
0703 ;
摘要:
Carbon capture and storage, in which CO2 is selectively removed and sequestrated from flue gas, is a promising strategy to mitigate CO2 emissions and global warming. Conventionally, CO2 capture involves an energy-consuming absorbent regeneration step by thermal decomposition (2,0-4.0 GJ ton(-1 )CO(2)), which accounts for the majority (60%-70%) of the total cost. Here, we propose an alternative electrochemical cycle to capture CO2 in an aqueous alkaline solution, facilitated by the pH swing effect from a proton-coupled electron transfer redox reaction of a biological proton carrier, riboflavin 5'-monophosphate sodium salt hydrate (FMN/FMNH2). Under lab conditions, an electrolysis cell implementing the FMN proton carrier demonstrates a high energy efficiency, with only 9.8 kJ mol(-1) CO2 captured, which is much lower than traditional approaches using a monoethanolamine absorbent (2.0-4.0 GJ ton(-1) CO2, 88-176 kJ mol(-1) CO2). Thus, this system may contribute toward lowering the cost of CO2 capture.
引用
收藏
页数:12
相关论文
共 50 条