New Insights into the Fractional Order Diffusion Equation Using Entropy and Kurtosis

被引:32
作者
Ingo, Carson [1 ]
Magin, Richard L. [2 ]
Parrish, Todd B. [3 ]
机构
[1] Leiden Univ, Med Ctr, Dept Radiol, CJ Gorter Ctr High Field MRI, NL-2333 ZA Leiden, Netherlands
[2] Univ Illinois, Dept Bioengn, Chicago, IL 60607 USA
[3] Northwestern Univ, Dept Radiol, Chicago, IL 60611 USA
基金
美国国家卫生研究院;
关键词
entropy; kurtosis; fractional derivative; continuous time random walk; anomalous diffusion; magnetic resonance imaging; Mittag-Leffler function;
D O I
10.3390/e16115838
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fractional order derivative operators offer a concise description to model multi-scale, heterogeneous and non-local systems. Specifically, in magnetic resonance imaging, there has been recent work to apply fractional order derivatives to model the non-Gaussian diffusion signal, which is ubiquitous in the movement of water protons within biological tissue. To provide a new perspective for establishing the utility of fractional order models, we apply entropy for the case of anomalous diffusion governed by a fractional order diffusion equation generalized in space and in time. This fractional order representation, in the form of the Mittag-Leffler function, gives an entropy minimum for the integer case of Gaussian diffusion and greater values of spectral entropy for non-integer values of the space and time derivatives. Furthermore, we consider kurtosis, defined as the normalized fourth moment, as another probabilistic description of the fractional time derivative. Finally, we demonstrate the implementation of anomalous diffusion, entropy and kurtosis measurements in diffusion weighted magnetic resonance imaging in the brain of a chronic ischemic stroke patient.
引用
收藏
页码:5838 / 5852
页数:15
相关论文
共 18 条
[1]   KURTOSIS - A CRITICAL-REVIEW [J].
BALANDA, KP ;
MACGILLIVRAY, HL .
AMERICAN STATISTICIAN, 1988, 42 (02) :111-119
[2]   The scaling laws of human travel [J].
Brockmann, D ;
Hufnagel, L ;
Geisel, T .
NATURE, 2006, 439 (7075) :462-465
[3]   Discrete and continuous random walk models for space-time fractional diffusion [J].
Gorenflo, R ;
Vivoli, A ;
Mainardi, F .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :101-116
[4]  
Gorenflo R., 2002, Fract. Calc. Appl. Anal., V5, P491
[5]   On Random Walks and Entropy in Diffusion-Weighted Magnetic Resonance Imaging Studies of Neural Tissue [J].
Ingo, Carson ;
Magin, Richard L. ;
Colon-Perez, Luis ;
Triplett, William ;
Mareci, Thomas H. .
MAGNETIC RESONANCE IN MEDICINE, 2014, 71 (02) :617-627
[6]   Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging [J].
Jensen, JH ;
Helpern, JA ;
Ramani, A ;
Lu, HZ ;
Kaczynski, K .
MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (06) :1432-1440
[7]   Entropy-Based Measures for Quantifying Sleep-Stage Transition Dynamics: Relationship to Sleep Fragmentation and Daytime Sleepiness [J].
Kirsch, Matthew R. ;
Monahan, Ken ;
Weng, Jia ;
Redline, Susan ;
Loparo, Kenneth A. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2012, 59 (03) :787-796
[8]  
Magin R.L., 2006, Fractional calculus in bioengineering
[9]  
Meerschaert M. M., 2012, STOCHASTIC MODELS FR, V43
[10]   FRACTIONAL MODEL EQUATION FOR ANOMALOUS DIFFUSION [J].
METZLER, R ;
GLOCKLE, WG ;
NONNENMACHER, TF .
PHYSICA A, 1994, 211 (01) :13-24