Machine learning approach for the ground level aerosol concentration analysis

被引:0
作者
Nagovitsyna, Ekaterina [1 ,2 ]
Luzhetskaya, Anna [1 ]
Poddubny, Vassily [1 ]
Shchelkanov, Aleksey [1 ]
Gadelshin, Vadim [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Ind Ecol, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] Johannes Gutenberg Univ Mainz, Mainz, Germany
来源
27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS | 2021年 / 11916卷
关键词
atmospheric aerosol; particulate matter; random forest algorithm; PM2.5;
D O I
10.1117/12.2603435
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A machine learning approach to solve a multiple regression problem is considered. Mass concentration of aerosol particles in the surface layer of the atmosphere was used as a dependent variable. The aerosol optical depth of the atmosphere and a number of meteorological parameters from the ECMWF ERAS reanalysis database were chosen as predictors. The problem was solved using an ensemble machine learning algorithm - a random forest.
引用
收藏
页数:5
相关论文
共 50 条
[41]   Estimating ground-level PM2.5 concentration using Landsat 8 in Chengdu, China [J].
Chen, Yunping ;
Han, Weihong ;
Chen, Shuzhong ;
Tong, Ling .
REMOTE SENSING OF THE ATMOSPHERE, CLOUDS, AND PRECIPITATION V, 2014, 9259
[42]   Using Kriging incorporated with wind direction to investigate ground-level PM2.5 concentration [J].
Zhang, Huang ;
Zhan, Yu ;
Li, Jiayu ;
Chao, Chun-Ying ;
Liu, Qianfeng ;
Wang, Chunying ;
Jia, Shuangqing ;
Ma, Lin ;
Biswas, Pratim .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 751
[43]   An integrated feature selection and machine learning framework for PM10 concentration prediction [J].
Kalantari, Elham ;
Gholami, Hamid ;
Malakooti, Hossein ;
Kaskaoutis, Dimitris G. ;
Saneei, Poorya .
ATMOSPHERIC POLLUTION RESEARCH, 2025, 16 (05)
[44]   A Hybrid Model for the Prediction of Air Pollutants Concentration, Based on Statistical and Machine Learning Techniques [J].
Minutti-Martinez, Carlos ;
Arellano-Vazquez, Magali ;
Zamora-Machado, Marlene .
ADVANCES IN SOFT COMPUTING (MICAI 2021), PT II, 2021, 13068 :252-264
[45]   Particulate matter estimation using satellite datasets: a machine learning approach [J].
Verma, Sunita ;
Sharma, Ajay ;
Payra, Swagata ;
Chaudhary, Neelam ;
Mishra, Manoj .
Environmental Science and Pollution Research, 2024, 31 (58) :66372-66387
[46]   An explainable two-stage machine learning approach for precipitation forecast [J].
Senocak, Ali Ulvi Galip ;
Yilmaz, M. Tugrul ;
Kalkan, Sinan ;
Yucel, Ismail ;
Amjad, Muhammad .
JOURNAL OF HYDROLOGY, 2023, 627
[47]   Predictors of depression among Chinese college students: a machine learning approach [J].
Luo, Lin ;
Yuan, Junfeng ;
Wu, Chenghan ;
Wang, Yanling ;
Zhu, Rui ;
Xu, Huilin ;
Zhang, Luqin ;
Zhang, Zhongge .
BMC PUBLIC HEALTH, 2025, 25 (01)
[48]   Hybrid deep learning model for ozone concentration prediction: comprehensive evaluation and comparison with various machine and deep learning algorithms [J].
Yafouz, Ayman ;
Ahmed, Ali Najah ;
Zaini, Nur'atiah ;
Sherif, Mohsen ;
Sefelnasr, Ahmed ;
El-Shafie, Ahmed .
ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2021, 15 (01) :902-933
[49]   Spatiotemporal analysis of ground and satellite-based aerosol for air quality assessment in the Southeast Asia region [J].
Nguyen, Thanh T. N. ;
Pham, Ha V. ;
Lasko, Kristofer ;
Bui, Mai T. ;
Laffly, Dominique ;
Jourdan, Astrid ;
Bui, Hung Q. .
ENVIRONMENTAL POLLUTION, 2019, 255
[50]   Estimation of Hourly Ground-Level PM. Concentration Based on Himawari-8 Apparent Reflectance [J].
Fan, Wenzhi ;
Qin, Kai ;
Cui, Yilong ;
Li, Ding ;
Bilal, Muhammad .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01) :76-85