Machine learning approach for the ground level aerosol concentration analysis

被引:0
作者
Nagovitsyna, Ekaterina [1 ,2 ]
Luzhetskaya, Anna [1 ]
Poddubny, Vassily [1 ]
Shchelkanov, Aleksey [1 ]
Gadelshin, Vadim [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Ind Ecol, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] Johannes Gutenberg Univ Mainz, Mainz, Germany
来源
27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS | 2021年 / 11916卷
关键词
atmospheric aerosol; particulate matter; random forest algorithm; PM2.5;
D O I
10.1117/12.2603435
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A machine learning approach to solve a multiple regression problem is considered. Mass concentration of aerosol particles in the surface layer of the atmosphere was used as a dependent variable. The aerosol optical depth of the atmosphere and a number of meteorological parameters from the ECMWF ERAS reanalysis database were chosen as predictors. The problem was solved using an ensemble machine learning algorithm - a random forest.
引用
收藏
页数:5
相关论文
共 50 条
[31]   Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships [J].
Perrone, M. R. ;
Romano, S. ;
Orza, J. A. G. .
ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (21) :16570-16589
[32]   Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships [J].
M. R. Perrone ;
S. Romano ;
J. A. G. Orza .
Environmental Science and Pollution Research, 2015, 22 :16570-16589
[33]   Using machine learning to quantify drivers of aerosol pollution trend in China from 2015 to 2022 [J].
Ji, Yao ;
Zhang, Yunjiang ;
Liu, Diwen ;
Zhang, Kexin ;
Cai, Pingping ;
Zhu, Baizhen ;
Zhang, Binqian ;
Xian, Jiukun ;
Wang, Hongli ;
Ge, Xinlei .
APPLIED GEOCHEMISTRY, 2023, 151
[34]   Mapping of MODIS satellite data with ground level particulate matter concentration - a case study for Shimla [J].
Ganguly, Rajiv ;
Sharma, Guru Sharan Dass ;
Rana, Rishi .
2019 FIFTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP 2019), 2019, :497-502
[35]   Machine Learning Based PM 2.5 and 10 Concentration Modeling for Delhi City [J].
Gupta, Vikhyat ;
Gharekhan, Dhwanilnath ;
Samal, Dipak R. .
JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2025, 53 (01) :81-99
[36]   A novel ensemble machine learning exposure model system for ground-level ozone at the national scale: A case of mainland China from 2013 to 2020 [J].
Wang, Jiawei .
ENVIRONMENTAL IMPACT ASSESSMENT REVIEW, 2024, 109
[37]   Prediction of harbour vessel emissions based on machine learning approach [J].
Chen, Zhong Shuo ;
Lam, Jasmine Siu Lee ;
Xiao, Zengqi .
TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2024, 131
[38]   Size and mass distributions of ground-level sub-micrometer biomass burning aerosol from small wildfires [J].
Okoshi, Rintaro ;
Rasheed, Abdur ;
Reddy, Greeshma Chen ;
McCrowey, Clinton J. ;
Curtis, Daniel B. .
ATMOSPHERIC ENVIRONMENT, 2014, 89 :392-402
[39]   Eulerian-Lagrangian CFD-microphysics modeling of aircraft-emitted aerosol formation at ground-level [J].
Cantin, Sebastien ;
Chouak, Mohamed ;
Garnier, Francois .
AEROSOL SCIENCE AND TECHNOLOGY, 2024, 58 (12) :1347-1370
[40]   Aerosol Characteristics Over an Eastern Indian City Using Sun Photometer Observations and Machine Learning Frameworks [J].
Panda, Jagabandhu ;
Sarkar, Ankan ;
Pandey, Vaibhav ;
Mukherjee, Asmita .
AEROSOL SCIENCE AND ENGINEERING, 2025,