Machine learning approach for the ground level aerosol concentration analysis

被引:0
作者
Nagovitsyna, Ekaterina [1 ,2 ]
Luzhetskaya, Anna [1 ]
Poddubny, Vassily [1 ]
Shchelkanov, Aleksey [1 ]
Gadelshin, Vadim [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Ind Ecol, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] Johannes Gutenberg Univ Mainz, Mainz, Germany
来源
27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS | 2021年 / 11916卷
关键词
atmospheric aerosol; particulate matter; random forest algorithm; PM2.5;
D O I
10.1117/12.2603435
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A machine learning approach to solve a multiple regression problem is considered. Mass concentration of aerosol particles in the surface layer of the atmosphere was used as a dependent variable. The aerosol optical depth of the atmosphere and a number of meteorological parameters from the ECMWF ERAS reanalysis database were chosen as predictors. The problem was solved using an ensemble machine learning algorithm - a random forest.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Study of the correlation between the near-ground PM10 mass concentration and the aerosol optical depth
    Filip, Luminita
    Stefan, Sabina
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2011, 73 (13) : 1883 - 1889
  • [22] Assessment of Autistic Disorder Using Machine Learning Approach
    Ray, Camellia
    Tripathy, Hrudaya Kumar
    Mishra, Sushruta
    INTELLIGENT COMPUTING AND COMMUNICATION, ICICC 2019, 2020, 1034 : 209 - 219
  • [23] An Interpretable Machine Learning Approach for Hepatitis B Diagnosis
    Obaido, George
    Ogbuokiri, Blessing
    Swart, Theo G.
    Ayawei, Nimibofa
    Kasongo, Sydney Mambwe
    Aruleba, Kehinde
    Mienye, Ibomoiye Domor
    Aruleba, Idowu
    Chukwu, Williams
    Osaye, Fadekemi
    Egbelowo, Oluwaseun F.
    Simphiwe, Simelane
    Esenogho, Ebenezer
    APPLIED SCIENCES-BASEL, 2022, 12 (21):
  • [24] Geostationary satellite-derived ground-level particulate matter concentrations using real-time machine learning in Northeast Asia
    Park, Seohui
    Im, Jungho
    Kim, Jhoon
    Kim, Sang-Min
    ENVIRONMENTAL POLLUTION, 2022, 306
  • [25] High-spatial resolution ground-level ozone in Yunnan, China: A spatiotemporal estimation based on comparative analyses of machine learning models
    Man, Xingwei
    Liu, Rui
    Zhang, Yu
    Yu, Weiqiang
    Kong, Fanhao
    Liu, Li
    Luo, Yan
    Feng, Tao
    ENVIRONMENTAL RESEARCH, 2024, 251
  • [26] Machine learning-based detection of sudden air pollutant level changes: impacts on public health
    Sarkar P.
    Saha M.
    International Journal of Information Technology, 2024, 16 (6) : 3781 - 3789
  • [27] Machine learning analysis of PM1 impact on visibility with comprehensive sensitivity evaluation of concentration, composition, and meteorological factors
    Majewski, Grzegorz
    Szelag, Bartosz
    Rogula-Kozlowska, Wioletta
    Rogula-Kopiec, Patrycja
    Brandyk, Andrzej
    Rybak, Justyna
    Radziemska, Maja
    Liniauskiene, Ernesta
    Klik, Barbara
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [28] Novel aerosol analysis approach for characterization of nanoparticulate matter in snow
    Nazarenko, Yevgen
    Rangel-Alvarado, Rodrigo B.
    Kos, Gregor
    Kurien, Uday
    Ariya, Parisa A.
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2017, 24 (05) : 4480 - 4493
  • [29] Prediction of aerosol optical depth over Pakistan using novel hybrid machine learning model
    Zaheer, Komal
    Saeed, Sana
    Tariq, Salman
    ACTA GEOPHYSICA, 2023, 71 (04) : 2009 - 2029
  • [30] Using machine learning to quantify drivers of aerosol pollution trend in China from 2015 to 2022
    Ji, Yao
    Zhang, Yunjiang
    Liu, Diwen
    Zhang, Kexin
    Cai, Pingping
    Zhu, Baizhen
    Zhang, Binqian
    Xian, Jiukun
    Wang, Hongli
    Ge, Xinlei
    APPLIED GEOCHEMISTRY, 2023, 151