Machine learning approach for the ground level aerosol concentration analysis

被引:0
|
作者
Nagovitsyna, Ekaterina [1 ,2 ]
Luzhetskaya, Anna [1 ]
Poddubny, Vassily [1 ]
Shchelkanov, Aleksey [1 ]
Gadelshin, Vadim [2 ,3 ]
机构
[1] Russian Acad Sci, Inst Ind Ecol, Ural Branch, Ekaterinburg, Russia
[2] Ural Fed Univ, Ekaterinburg, Russia
[3] Johannes Gutenberg Univ Mainz, Mainz, Germany
来源
27TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS | 2021年 / 11916卷
关键词
atmospheric aerosol; particulate matter; random forest algorithm; PM2.5;
D O I
10.1117/12.2603435
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A machine learning approach to solve a multiple regression problem is considered. Mass concentration of aerosol particles in the surface layer of the atmosphere was used as a dependent variable. The aerosol optical depth of the atmosphere and a number of meteorological parameters from the ECMWF ERAS reanalysis database were chosen as predictors. The problem was solved using an ensemble machine learning algorithm - a random forest.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Estimating hourly ground-level aerosols using Geostationary Environment Monitoring Spectrometer aerosol optical depth: a machine learning approach
    Sungmin, O.
    Yoon, Ji Won
    Park, Seon Ki
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2025, 18 (06) : 1471 - 1484
  • [2] Changes in column aerosol optical depth and ground-level particulate matter concentration over East Asia
    Nam, Jihyun
    Kim, Sang-Woo
    Park, Rokjin J.
    Park, Jin-Soo
    Park, Sang Seo
    AIR QUALITY ATMOSPHERE AND HEALTH, 2018, 11 (01) : 49 - 60
  • [3] Changes in column aerosol optical depth and ground-level particulate matter concentration over East Asia
    Jihyun Nam
    Sang-Woo Kim
    Rokjin J. Park
    Jin-Soo Park
    Sang Seo Park
    Air Quality, Atmosphere & Health, 2018, 11 : 49 - 60
  • [4] Assessing the Nonlinear Effect of Atmospheric Variables on Primary and Oxygenated Organic Aerosol Concentration Using Machine Learning
    Qin, Yiming
    Ye, Jianhuai
    Ohno, Paul
    Liu, Pengfei
    Wang, Junfeng
    Fu, Pingqing
    Zhou, Liyuan
    Li, Yong Jie
    Martin, Scot T.
    Chan, Chak K.
    ACS EARTH AND SPACE CHEMISTRY, 2022, 6 (04): : 1059 - 1066
  • [5] Improving the Accuracy of Daily Satellite-Derived Ground-Level Fine Aerosol Concentration Estimates for North America
    van Donkelaar, Aaron
    Martin, Randall V.
    Pasch, Adam N.
    Szykman, James J.
    Zhang, Lin
    Wang, Yuxuan X.
    Chen, Dan
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (21) : 11971 - 11978
  • [6] Regional Representativeness Analysis of Ground-Monitoring PM2.5 Concentration Based on Satellite Remote Sensing Imagery and Machine Learning Techniques
    Luo, Rui
    Zhang, Meng
    Ma, Guodong
    REMOTE SENSING, 2023, 15 (12)
  • [7] Estimation of surface-level PM2.5 concentration using aerosol optical thickness through aerosol type analysis method
    Chen, Qi-Xiang
    Yuan, Yuan
    Huang, Xing
    Jiang, Yan-Qiu
    Tan, He-Ping
    ATMOSPHERIC ENVIRONMENT, 2017, 159 : 26 - 33
  • [8] LEAD DISTRIBUTION IN GROUND-LEVEL ATMOSPHERIC AEROSOL OF ZAPORIZHIA CITY
    Yemelianov, V. O.
    Nasiedkin, Ye, I
    Sachko, A., V
    Kuraieva, I., V
    Koshliakova, T. O.
    MINERALOGICAL JOURNAL-UKRAINE, 2020, 42 (04): : 104 - 115
  • [9] Machine Learning-Based Estimation of PM2.5 Concentration Using Ground Surface DoFP Polarimeters
    Takruri, Maen
    Abubakar, Abubakar
    Jallad, Abdul-Halim
    Altawil, Basel
    Marpu, Prashanth R.
    Bermak, Amine
    IEEE ACCESS, 2022, 10 : 23489 - 23496