Dense packings of congruent circles in a circle

被引:171
作者
Graham, RL
Lubachevsky, BD
Nurmela, KJ
Ostergard, PRJ
机构
[1] AT&T Bell Labs, Murray Hill, NJ 07974 USA
[2] Aalto Univ, Dept Comp Sci, FIN-02150 Espoo, Finland
[3] Eindhoven Univ Technol, Dept Math & Comp Sci, NL-5600 MB Eindhoven, Netherlands
基金
芬兰科学院;
关键词
D O I
10.1016/S0012-365X(97)00050-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of finding packings of congruent circles in a circle, or, equivalently, of spreading points in a circle, is considered, Two packing algorithms are discussed, and the best packings found of up to 65 circles are presented.
引用
收藏
页码:139 / 154
页数:16
相关论文
共 18 条
[1]   THE CLOSEST PACKING OF EQUAL CIRCLES ON A SPHERE [J].
CLARE, BW ;
KEPERT, DL .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 405 (1829) :329-344
[2]  
Conway J. H., 1993, SPHERE PACKINGS LATT
[3]  
Croft H. T., 1991, SPRINGER SCI BUSINES
[4]  
Goldberg M., 1971, MATH MAG, V44, P134, DOI [10.2307/2688222, DOI 10.2307/2688222]
[5]  
Graham R.L., 1995, ELECT J COMBIN, V2
[6]   PENNY-PACKING AND 2-DIMENSIONAL CODES [J].
GRAHAM, RL ;
SLOANE, NJA .
DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (01) :1-11
[7]  
GREENING MG, 1968, AM MATH MON, V75, P192
[8]   INTBIS, A PORTABLE INTERVAL NEWTON BISECTION PACKAGE [J].
KEARFOTT, RB ;
NOVOA, M .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1990, 16 (02) :152-157
[9]  
Kravitz S, 1967, Math. Mag., V40, P65
[10]   HOW TO SIMULATE BILLIARDS AND SIMILAR SYSTEMS [J].
LUBACHEVSKY, BD .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 94 (02) :255-283