Bound state solutions, Fisher information measures, expectation values, and transmission coefficient of the Varshni potential

被引:18
作者
Omugbe, E. [1 ]
Osafile, O. E. [1 ]
Okon, I. B. [2 ]
Enaibe, E. A. [1 ]
Onyeaju, M. C. [3 ]
机构
[1] Fed Univ Petr Resources, Dept Phys, Effurun, Delta State, Nigeria
[2] Univ Uyo, Dept Phys, Theoret Phys Grp, Uyo, Nigeria
[3] Univ Port Harcourt, Dept Phys, Theoret Phys Grp, Port Harcourt, Nigeria
关键词
Varshni potential; Fisher information measure; WKB approximation; expectation values; Cramer-Rao inequality;
D O I
10.1080/00268976.2021.1909163
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The eigensolutions of the Schrodinger equation under the Varshni potential function are studied with two eigensolution techniques such as the Nikiforov- Uvarov and the semi-classical WKB approximation methods. We extended the work to investigate the analytical and numerical Fisher information measure of complexities and also the expectations values using the Hellmann-Feynman theorem. Wedetermined the transmission coefficient using the WKB method. The WKB energy levels andmeanvalues fluctuate with the potential range compared with theNUderived values. Our results for the Fisher information measure obey the uncertainty relation I(rho)I(gamma) >= 36 and the Cramer-Rao inequality for position space (I(rho) < r(2)> >= 9). The mean values conform to the ones reported in existing literature. [GRAPHICS] .
引用
收藏
页数:15
相关论文
共 59 条
[1]  
Adil, 2013, INT J APPL NAT SCI, V2
[2]  
Antolin, 2009, PHYS A, V388
[3]   Complexity Analysis of Ionization Processes and Isoelectronic Series [J].
Antolin, J. ;
Angulo, J. C. .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2009, 109 (03) :586-593
[4]  
Canal, 2010, PHYS LETTS A, V374
[5]  
Chatterjee S, 2020, REP MATH PHYS, V85, P281, DOI 10.1016/S0034-4877(20)30030-6
[6]  
Chukwuocha, 2019, SCI AFRACANA, V18
[7]  
Davies PaulC. W., 1994, Quantum Mechanics, V2nd
[8]  
Dehesa, 2011, J PHYS MATH THEOR, V44
[9]  
Dehesa, 2004, J CHEM PHYS, V120
[10]   The Fisher-information-based uncertainty relation, Cramer-Rao inequality and kinetic energy for the D-dimensional central problem [J].
Dehesa, J. S. ;
Gonzalez-Ferez, R. ;
Sanchez-Moreno, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (08) :1845-1856