The generalized maximum belief entropy model

被引:2
|
作者
Li, Siran [1 ]
Cai, Rui [2 ]
机构
[1] Southwest Univ, Sch Comp & Informat Sci, Chongqing 400715, Peoples R China
[2] Southwest Univ, Business Coll, Chongqing 402460, Peoples R China
关键词
Entropy; Uncertainty measure; Tsallis entropy; Renyi entropy; Shannon entropy; Deng entropy; DECISION-MAKING; UNCERTAINTY MEASURE; TSALLIS ENTROPY; DEFINITION; FUSION; RELIABILITY; TIME;
D O I
10.1007/s00500-022-06896-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In evidence theory, the generalized belief entropy model unifies Renyi entropy, Tsallis entropy, and Deng entropy. In order to further unify the maximum values of Renyi entropy, Tsallis entropy, and Deng entropy, this paper proposes a maximum model of generalized belief entropy by analyzing the generalized belief entropy model. This model shows that the size of the maximum generalized belief entropy is not related to the specific mass value, but is related to the size of each propositional space, and the maximum values of Renyi-Deng entropy and Tsallis-Deng entropy are obtained through this model. In addition, the applicability of the proposed model is obtained through verification tests and sensitivity analysis of the model.
引用
收藏
页码:4187 / 4198
页数:12
相关论文
共 50 条
  • [1] The generalized maximum belief entropy model
    Siran Li
    Rui Cai
    Soft Computing, 2022, 26 : 4187 - 4198
  • [2] Generalized Belief Entropy and Its Application in Identifying Conflict Evidence
    Liu, Fan
    Gao, Xiaozhuan
    Zhao, Jie
    Deng, Yong
    IEEE ACCESS, 2019, 7 : 126625 - 126633
  • [3] A Generalized Belief Entropy With Nonspecificity and Structural Conflict
    Zhou, Mi
    Zhu, Shan-Shan
    Chen, Yu-Wang
    Wu, Jian
    Herrera-Viedma, Enrique
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2022, 52 (09): : 5532 - 5545
  • [4] Power Law and Dimension of the Maximum Value for Belief Distribution With the Maximum Deng Entropy
    Zhu, Ruonan
    Chen, Jiaqi
    Kang, Bingyi
    IEEE ACCESS, 2020, 8 (08): : 47713 - 47719
  • [5] The Maximum Deng Entropy
    Kang, Bingyi
    Deng, Yong
    IEEE ACCESS, 2019, 7 : 120758 - 120765
  • [6] A New Belief Entropy Based on Deng Entropy
    Wang, Dan
    Gao, Jiale
    Wei, Daijun
    ENTROPY, 2019, 21 (10)
  • [7] THE MAXIMUM ENTROPY PRINCIPLE: A GENERALIZED CONSTRAINT-BASED ENTROPY
    Chakrabarti, C. G.
    Chakrabarty, I.
    Ghosh, Koyel
    MODERN PHYSICS LETTERS B, 2009, 23 (13): : 1715 - 1721
  • [8] An Improved Belief Entropy to Measure Uncertainty of Basic Probability Assignments Based on Deng Entropy and Belief Interval
    Zhao, Yonggang
    Ji, Duofa
    Yang, Xiaodong
    Fei, Liguo
    Zhai, Changhai
    ENTROPY, 2019, 21 (11)
  • [9] Generalized Ordered Propositions Fusion Based on Belief Entropy
    Li, Y.
    Deng, Y.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2018, 13 (05) : 792 - 807
  • [10] Generalized Core Functions of Maximum Entropy Theory of Ecology
    Corcino, Cristina B.
    Corcino, Roberto B.
    Picardal, Jay P.
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2024, 17 (03): : 1674 - 1684