Integral self-affine tiles in R-n .2. Lattice tilings

被引:107
作者
Lagarias, JC [1 ]
Wang, Y [1 ]
机构
[1] GEORGIA INST TECHNOL,SCH MATH,ATLANTA,GA 30332
关键词
digit set; self-affine tile; lattice tiling; quasi-product form; wavelet;
D O I
10.1007/BF02647948
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be an expanding n x n integer matrix with \det(A)\ = m. A standard digit set D for A is any complete set of coset representatives for Z(n)/A(Z(n)). Associated to a given 2) is a set T(A, D), which is the attractor of an affine iterated function system, satisfying T = U (d is an element of D) (T + d) It is known that T(A, D) tiles R-n by some subset of Z(n). This paper proves that every standard digit set D gives a set T(A, D) that tiles R-n with a lattice tiling.
引用
收藏
页码:83 / 102
页数:20
相关论文
共 30 条
[2]  
BERGER M, 1992, WAVELETS TUTORIAL TH, P295
[3]  
Cassels J.W.S., 1957, INTRO DIOPHANTINE AP
[4]  
CERVEAU D, 1995, ENSEMBLES INVARIANTS
[5]   WAVELETS, MULTISCALE ANALYSIS AND QUADRATURE MIRROR FILTERS [J].
COHEN, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :439-459
[6]   HARMONIC-FUNCTIONS FOR A TRANSITION OPERATOR AND APPLICATIONS [J].
CONZE, JP ;
RAUGI, A .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1990, 118 (03) :273-310
[7]  
CONZE JP, 1995, PAVAGES AUTOAFFINES
[8]  
DEBOOR C, 1991, AM MATH MONTHLY, V38, P793
[9]  
Falconer K. J., 1985, The geometry of fractal sets
[10]  
Gr?nbaum B., 1987, TILINGS PATTERNS