A survey of erasable itemset mining algorithms

被引:15
|
作者
Tuong Le [1 ,2 ]
Bay Vo [1 ,2 ]
Giang Nguyen [3 ]
机构
[1] Ton Duc Thang Univ, Div Data Sci, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Informat Technol, Ho Chi Minh City, Vietnam
[3] Ho Chi Minh City Univ Technol, Fac Informat Technol, Ho Chi Minh City, Vietnam
关键词
EFFICIENT ALGORITHM; ASSOCIATION RULES; PRELARGE TREES; FREQUENT; LATTICE; MAINTENANCE; BITTABLEFI; DISCOVERY; MINER;
D O I
10.1002/widm.1137
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pattern mining, one of the most important problems in data mining, involves finding existing patterns in data. This article provides a survey of the available literature on a variant of pattern mining, namely erasable itemset (EI) mining. EI mining was first presented in 2009 and META is the first algorithm to solve this problem. Since then, a number of algorithms, such as VME, MERIT, and dMERIT+, have been proposed for mining EI. MEI, proposed in 2014, is currently the best algorithm for mining EIs. In this study, the META, VME, MERIT, dMERIT+, and MEI algorithms are described and compared in terms of mining time and memory usage. WIREs Data Mining Knowl Discov 2014, 4:356-379. doi: 10.1002/widm.1137 For further resources related to this article, please visit the . Conflict of interest: The authors have declared no conflicts of interest for this article.
引用
收藏
页码:356 / 379
页数:24
相关论文
共 50 条
  • [1] Quasi-Erasable Itemset Mining
    Hong, Tzung-Pei
    Chen, Lu-Hung
    Wang, Shyue-Liang
    Lin, Chun-Wei
    Vo, Bay
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1816 - 1820
  • [2] Subsume Concept in Erasable Itemset Mining
    Giang Nguyen
    Tuong Le
    Bay Vo
    Bac Le
    Phi-Cuong Trinh
    COMPUTATIONAL COLLECTIVE INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, ICCCI 2014, 2014, 8733 : 515 - 523
  • [3] Subsume concept in erasable itemset mining
    1600, Springer Verlag (8733):
  • [4] Frequent Itemset Mining Algorithms :A Literature Survey
    Jamsheela, O.
    Raju, G.
    2015 IEEE INTERNATIONAL ADVANCE COMPUTING CONFERENCE (IACC), 2015, : 1099 - 1104
  • [5] Federated Erasable-Itemset Mining with Quasi-Erasable Itemsets
    Hong, Tzung-Pei
    Kuo, Meng-Jui
    Chen, Chun-Hao
    Li, Katherine Shu-Min
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT I, ACIIDS 2024, 2024, 14795 : 299 - 307
  • [6] Applicable Metamorphic Testing for Erasable-Itemset Mining
    Hong, Tzung-Pei
    Chiu, Chen-Chia
    Su, Ja-Hwung
    Chen, Chun-Hao
    IEEE ACCESS, 2022, 10 : 38545 - 38554
  • [7] Mining erasable itemsets with subset and superset itemset constraints
    Bay Vo
    Tuong Le
    Pedrycz, Witold
    Giang Nguyen
    Baik, Sung Wook
    EXPERT SYSTEMS WITH APPLICATIONS, 2017, 69 : 50 - 61
  • [8] A Dedicated Temporal Erasable-Itemset Mining Algorithm
    Hong, Tzung-Pei
    Chang, Hao
    Li, Shu-Min
    Tsai, Yu-Chuan
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 977 - 985
  • [9] A survey of itemset mining
    Fournier-Viger, Philippe
    Lin, Jerry Chun-Wei
    Bay Vo
    Tin Truong Chi
    Zhang, Ji
    Hoai Bac Le
    WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2017, 7 (04)
  • [10] Erasable itemset mining over incremental databases with weight conditions
    Lee, Gangin
    Yun, Unil
    Ryang, Heungmo
    Kim, Donggyu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2016, 52 : 213 - 234