Saliency Detection via Combining Global Shape and Local Cue Estimation

被引:0
作者
Qi, Qiang [1 ,2 ]
Jian, Muwei [1 ,2 ]
Yin, Yilong [1 ]
Dong, Junyu [2 ]
Zhang, Wenyin [3 ]
Yu, Hui [4 ]
机构
[1] Shandong Univ Finance & Econ, Sch Comp Sci & Technol, Jinan, Shandong, Peoples R China
[2] Ocean Univ China, Dept Comp Sci & Technol, Qingdao, Peoples R China
[3] Linyi Univ, Sch Informat Sci & Engn, Linyi, Peoples R China
[4] Univ Portsmouth, Sch Creat Technol, Portsmouth, Hants, England
来源
INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING, ISCIDE 2017 | 2017年 / 10559卷
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Saliency detection; QDWD; Locality-constrained linear coding; Local cue; ATTENTION; MODEL;
D O I
10.1007/978-3-319-67777-4_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, saliency detection has become a hot issue in computer vision. In this paper, a novel framework for image saliency detection is introduced by modeling global shape and local cue estimation simultaneously. Firstly, Quaternionic Distance Based Weber Descriptor (QDWD), which was initially designed for detecting outliers in color images, is used to model the salient object shape in an image. Secondly, we detect local saliency based on the reconstruction error by using a locality-constrained linear coding algorithm. Finally, by integrating global shape with local cue, a reliable saliency map can be computed and estimated. Experimental results, based on two widely used and openly available databases, show that the proposed method can produce reliable and promising results, compared to other state-of-the-art saliency-detection algorithms.
引用
收藏
页码:325 / 334
页数:10
相关论文
共 35 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]   Quantitative Analysis of Human-Model Agreement in Visual Saliency Modeling: A Comparative Study [J].
Borji, Ali ;
Sihite, Dicky N. ;
Itti, Laurent .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (01) :55-69
[3]   Global Contrast Based Salient Region Detection [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Torr, Philip H. S. ;
Hu, Shi-Min .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (03) :569-582
[4]   SalientShape: group saliency in image collections [J].
Cheng, Ming-Ming ;
Mitra, Niloy J. ;
Huang, Xiaolei ;
Hu, Shi-Min .
VISUAL COMPUTER, 2014, 30 (04) :443-453
[5]  
Cholakkal H., 2015, BMVC
[6]   Visual saliency estimation by nonlinearly integrating features using region covariances [J].
Erdem, Erkut ;
Erdem, Aykut .
JOURNAL OF VISION, 2013, 13 (04)
[7]   Context-Aware Saliency Detection [J].
Goferman, Stas ;
Zelnik-Manor, Lihi ;
Tal, Ayellet .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (10) :1915-1926
[8]  
Harel J., 2006, P 20 ANN C NEURAL IN, P545
[9]   Exemplar-Driven Top-Down Saliency Detection via Deep Association [J].
He, Shengfeng ;
Lau, Rynson W. H. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :5723-5732
[10]   Biologically Inspired Features for Scene Classification in Video Surveillance [J].
Huang, Kaiqi ;
Tao, Dacheng ;
Yuan, Yuan ;
Li, Xuelong ;
Tan, Tieniu .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2011, 41 (01) :307-313