A MATLAB toolbox for Granger causal connectivity analysis

被引:575
作者
Seth, Anil K. [1 ,2 ]
机构
[1] Univ Sussex, Sackler Ctr Consciousness Sci, Brighton BN1 9QJ, E Sussex, England
[2] Univ Sussex, Sch Informat, Brighton BN1 9QJ, E Sussex, England
基金
英国工程与自然科学研究理事会;
关键词
MATLAB; Granger causality; Toolbox; Network theory; Causal density; FUNCTIONAL CONNECTIVITY; SPEECH-PERCEPTION; NEURAL-NETWORKS; BRAIN NETWORKS; EEG; MODEL; VARIABILITY; SIGNALS; BINDING; CORTEX;
D O I
10.1016/j.jneumeth.2009.11.020
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Assessing directed functional connectivity from time series data is a key challenge in neuroscience. One approach to this problem leverages a combination of Granger causality analysis and network theory. This article describes a freely available MATLAB toolbox - 'Granger causal connectivity analysis' (GCCA) - which provides a core set of methods for performing this analysis on a variety of neuroscience data types including neuroelectric, neuromagnetic, functional MRI, and other neural signals. The toolbox includes core functions for Granger causality analysis of multivariate steady-state and event-related data, functions to preprocess data, assess statistical significance and validate results, and to compute and display network-level indices of causal connectivity including 'causal density' and 'causal flow'. The toolbox is deliberately small, enabling its easy assimilation into the repertoire of researchers. It is however readily extensible given proficiency with the MATLAB language. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:262 / 273
页数:12
相关论文
共 76 条
[1]   The variability of human, BOLD hemodynamic responses [J].
Aguirre, GK ;
Zarahn, E ;
D'Esposito, M .
NEUROIMAGE, 1998, 8 (04) :360-369
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]   Radial basis function approach to nonlinear Granger causality of time series [J].
Ancona, N ;
Marinazzo, D ;
Stramaglia, S .
PHYSICAL REVIEW E, 2004, 70 (05) :7-1
[4]  
[Anonymous], 1993, MONOGRAPHS STAT APPL
[5]  
[Anonymous], 2007, Scholarpedia, DOI DOI 10.4249/scholarpedia.1623
[6]   Estimation of the cortical functional connectivity with the multimodal integration of high-resolution EEG and fMRI data by directed transfer function [J].
Babiloni, F ;
Cincotti, F ;
Babiloni, C ;
Carducci, F ;
Mattia, D ;
Astolfi, L ;
Basilisco, A ;
Rossini, PM ;
Ding, L ;
Ni, Y ;
Cheng, J ;
Christine, K ;
Sweeney, J ;
He, B .
NEUROIMAGE, 2005, 24 (01) :118-131
[7]   Partial directed coherence:: a new concept in neural structure determination [J].
Baccalá, LA ;
Sameshima, K .
BIOLOGICAL CYBERNETICS, 2001, 84 (06) :463-474
[8]   Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables [J].
Barnett, Lionel ;
Barrett, Adam B. ;
Seth, Anil K. .
PHYSICAL REVIEW LETTERS, 2009, 103 (23)
[9]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[10]   Autonomy: An information theoretic perspective [J].
Bertschinger, Nils ;
Olbrich, Eckehard ;
Ay, Nihat ;
Jost, Juergen .
BIOSYSTEMS, 2008, 91 (02) :331-345