Quantum-enhanced radiometry via approximate quantum error correction

被引:14
|
作者
Wang, W. [1 ]
Chen, Z-J [2 ]
Liu, X. [1 ]
Cai, W. [1 ]
Ma, Y. [1 ]
Mu, X. [1 ]
Pan, X. [1 ]
Hua, Z. [1 ]
Hu, L. [1 ]
Xu, Y. [1 ]
Wang, H. [1 ]
Song, Y. P. [1 ]
Zou, X-B [2 ]
Zou, C-L [2 ]
Sun, L. [1 ]
机构
[1] Tsinghua Univ, Ctr Quantum Informat, Inst Interdisciplinary Informat Sci, Beijing 100084, Peoples R China
[2] Univ Sci & Technol China, Key Lab Quantum Informat, CAS, Hefei 230026, Anhui, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
ATOM;
D O I
10.1038/s41467-022-30410-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Exotic quantum states can be advantageous for sensing, but are very fragile, so that some form of quantum error correction is needed. Here, the authors show how approximate QEC helps overcoming decoherence due to noise when measuring the excitation population of a receiver mode in a superconducting circuit. Quantum sensing based on exotic quantum states is appealing for practical metrology applications and fundamental studies. However, these quantum states are vulnerable to noise and the resulting quantum enhancement is weakened in practice. Here, we experimentally demonstrate a quantum-enhanced sensing scheme with a bosonic probe, by exploring the large Hilbert space of the bosonic mode and developing both the approximate quantum error correction and the quantum jump tracking approaches. In a practical radiometry scenario, we attain a 5.3 dB enhancement of sensitivity, which reaches 9.1 x 10(-4) Hz(-1/2) when measuring the excitation population of a receiver mode. Our results demonstrate the potential of quantum sensing with near-term quantum technologies, not only shedding new light on the quantum advantage of sensing, but also stimulating further efforts on bosonic quantum technologies.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Approximate Autonomous Quantum Error Correction with Reinforcement Learning
    Zeng, Yexiong
    Zhou, Zheng-Yang
    Rinaldi, Enrico
    Gneiting, Clemens
    Nori, Franco
    PHYSICAL REVIEW LETTERS, 2023, 131 (05)
  • [32] Eigenstate thermalization hypothesis and approximate quantum error correction
    Bao, Ning
    Cheng, Newton
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
  • [33] Sensitivity of Quantum-Enhanced Interferometers
    Salykina, Dariya
    Khalili, Farid
    SYMMETRY-BASEL, 2023, 15 (03):
  • [34] Quantum-Enhanced Transmittance Sensing
    Gong, Zihao
    Rodriguez, Nathaniel
    Gagatsos, Christos N.
    Guha, Saikat
    Bash, Boulat A.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2023, 17 (02) : 473 - 490
  • [35] Quantum-enhanced absorption refrigerators
    Luis A. Correa
    José P. Palao
    Daniel Alonso
    Gerardo Adesso
    Scientific Reports, 4
  • [36] Quantum-enhanced Doppler lidar
    Maximilian Reichert
    Roberto Di Candia
    Moe Z. Win
    Mikel Sanz
    npj Quantum Information, 8
  • [37] Quantum-Enhanced Pattern Recognition
    Ortolano G.
    Napoli C.
    Harney C.
    Pirandola S.
    Leonetti G.
    Boucher P.
    Losero E.
    Genovese M.
    Ruo-Berchera I.
    Physical Review Applied, 2023, 20 (02)
  • [38] Quantum-enhanced Doppler lidar
    Reichert, Maximilian
    Di Candia, Roberto
    Win, Moe Z.
    Sanz, Mikel
    NPJ QUANTUM INFORMATION, 2022, 8 (01)
  • [39] Quantum-Enhanced Machine Learning
    Dunjko, Vedran
    Taylor, Jacob M.
    Briegel, Hans J.
    PHYSICAL REVIEW LETTERS, 2016, 117 (13)
  • [40] Quantum-enhanced nonlinear microscopy
    Catxere A. Casacio
    Lars S. Madsen
    Alex Terrasson
    Muhammad Waleed
    Kai Barnscheidt
    Boris Hage
    Michael A. Taylor
    Warwick P. Bowen
    Nature, 2021, 594 : 201 - 206