In-situ introducing TiP2 nanocrystals in black phosphorus anode to promote high rate-capacity synergy

被引:18
作者
Zhou, Fengchen [1 ]
Yang, Xu-Sheng [3 ,4 ]
Liu, Jiangwen [1 ]
Liu, Jun [1 ]
Hu, Renzong [1 ]
Ouyang, Liuzhang [1 ,2 ]
Zhu, Min [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510641, Peoples R China
[2] China Australia Joint Lab Energy & Environm Mat, Key Lab Fuel Cell Technol Guangdong Prov, Guangzhou 510641, Peoples R China
[3] Hong Kong Polytech Univ, Adv Mfg Technol Res Ctr, Dept Ind & Syst Engn, Hung Hom, Hong Kong, Peoples R China
[4] Hong Kong Polytech Univ, Shenzhen Res Inst, Shenzhen 518057, Peoples R China
基金
中国国家自然科学基金;
关键词
TiP2; nanocrystal; Black phosphorus; In-situ; Chemical bond; Lithium ion battery; RED PHOSPHORUS; LITHIUM-ION; CARBON; PERFORMANCE; COMPOSITE; STORAGE;
D O I
10.1016/j.jpowsour.2021.229979
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Owing to the high theoretic capacity (2596 mAh g(-1)) and suitable lithiation potential (similar to 0.7 V vs. Li+/Li), Black phosphorus (BP) is considered as an ideal anode material for the fast-charging lithium-ion batteries. However, BP still faces the large volume change and low Li+ transfer during the charge/discharge. In this work, a facile two-step high-energy ball milling method is developed to synthesis the black phosphorus@TiP2-C (CBP@TiP2-C) nanocomposite for the high-rate performance anode material, in which the conductive nanocrystalline TiP2 is in-situ introduced and uniformly distributed into BP-C matrix. We reveal that the uniformly dispersed TiP2 nanocrystals can enhance the electronic and ionic conductivities of active particles and the electrode reaction kinetics. The lithiation product cubic LiyTiP4 phase is beneficial to release the stress, reduce the Li+ diffusion energy barrier and accelerate the Li+ extraction from LiP3 upon delithiation. Moreover, the contact among different components can be improved by Ti-C and P-C bonds in the CBP@TiP2-C, thus ensuring excellent electric contact within the material and enhancing the structural stability of composites. As a result, the CBP@TiP2-C anode displays a high reversible capacity of 1007.4 mAh g(-1) at 10.0 A g(-1) and excellent capacity retention of 925.6 mAh g(-1) after 500 cycles at 2 A g(-1).
引用
收藏
页数:9
相关论文
共 38 条
[11]   High-Performance Red P-Based P-TiP2-C Nanocomposite Anode for Lithium-Ion and Sodium-Ion Storage [J].
Kim, Sang-Ok ;
Manthiram, Arumugam .
CHEMISTRY OF MATERIALS, 2016, 28 (16) :5935-5942
[12]   The Scherrer equation and the dynamical theory of X-ray diffraction [J].
Leitao Muniz, Francisco Tiago ;
Ribeiro Miranda, Marcus Aurelio ;
dos Santos, Cassio Morilla ;
Sasaki, Jose Marcos .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2016, 72 :385-390
[13]   Significant enhancement of the cycling performance and rate capability of the P/C composite via chemical bonding (P-C) [J].
Li, Wei-Jie ;
Chou, Shu-Lei ;
Wang, Jia-Zhao ;
Liu, Hua-Kun ;
Dou, Shi-Xue .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (02) :505-511
[14]   Well-dispersed phosphorus nanocrystals within carbon via high-energy mechanical milling for high performance lithium storage [J].
Li, Xianyang ;
Chen, Gen ;
Le, Zaiyuan ;
Li, Xinru ;
Nie, Ping ;
Liu, Xiaoyan ;
Xu, Pengcheng ;
Wu, Hao Bin ;
Liu, Zhuang ;
Lu, Yunfeng .
NANO ENERGY, 2019, 59 :464-471
[15]   Watermelon-Like Structured SiOx-TiO2@C Nanocomposite as a High-Performance Lithium-Ion Battery Anode [J].
Li, Zhaolin ;
Zhao, Hailei ;
Lv, Pengpeng ;
Zhang, Zijia ;
Zhang, Yang ;
Du, Zhihong ;
Teng, Yongqiang ;
Zhao, Lina ;
Zhu, Zhiming .
ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (31)
[16]   Fluffy carbon-coated red phosphorus as a highly stable and high-rate anode for lithium-ion batteries [J].
Liu, Huan ;
Zhang, Shixue ;
Zhu, Qizhen ;
Cao, Bin ;
Zhang, Peng ;
Sun, Ning ;
Xu, Bin ;
Wu, Feng ;
Chen, Renjie .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (18) :11205-11213
[17]   A controlled red phosphorus@Ni-P core@shell nanostructure as an ultralong cycle-life and superior high-rate anode for sodium-ion batteries [J].
Liu, Shuai ;
Feng, Jinkui ;
Bian, Xiufang ;
Liu, Jie ;
Xu, Hui ;
An, Yongling .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) :1222-1233
[18]   Red Phosphorus Nanodots on Reduced Graphene Oxide as a Flexible and Ultra-Fast Anode for Sodium-Ion Batteries [J].
Liu, Yihang ;
Zhang, Anyi ;
Shen, Chenfei ;
Liu, Qingzhou ;
Cao, Xuan ;
Ma, Yuqiang ;
Chen, Liang ;
Lau, Christian ;
Chen, Tian-Chi ;
Wei, Fei ;
Zhou, Chongwu .
ACS NANO, 2017, 11 (06) :5530-5537
[19]   Multifunctional 0D-2D Ni2P Nanocrystals-Black Phosphorus Heterostructure [J].
Luo, Zhong-Zhen ;
Zhang, Yu ;
Zhang, Chaohua ;
Tan, Hui Teng ;
Li, Zhong ;
Abutaha, Anas ;
Wu, Xing-Long ;
Xiong, Qihua ;
Khor, Khiam Aik ;
Hippalgaonkar, Kedar ;
Xu, Jianwei ;
Hng, Huey Hoon ;
Yan, Qingyu .
ADVANCED ENERGY MATERIALS, 2017, 7 (02)
[20]   Materials Challenges and Opportunities of Lithium Ion Batteries [J].
Manthiram, Arumugam .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03) :176-184