Characterization of superabsorbent poly(sodium-acrylate acrylamide) hydrogels and influence of chemical structure on internally cured mortar

被引:63
作者
Krafcik, Matthew J. [1 ]
Erk, Kendra A. [1 ]
机构
[1] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
关键词
Internal curing; Superabsorbent polymer; Ion-hydrogel interactions; Autogenous shrinkage; Relative humidity; SHRINKAGE-REDUCING ADMIXTURES; HIGH-PERFORMANCE CONCRETE; STRENGTH;
D O I
10.1617/s11527-016-0823-7
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Internal curing of mortar through superabsorbent polymer hydrogels is explored as a solution to self-desiccation. Four different hydrogels of poly(sodium-acrylate acrylamide) are synthesized and the impact of chemical composition on mortar is assessed with relative humidity and autogenous shrinkage testing. The hydrogels are characterized with swelling tests in different salt solutions and compression tests. Chemical composition affected both swelling kinetics and gel network size. Mortar containing these hydrogels had increased relative humidity and markedly reduced autogenous shrinkage. Additionally, the chemical structure of the hydrogels was found to significantly impact the mortar's shrinkage. Hydrogels that quickly released most of their absorbed fluid were able to better reduce autogenous shrinkage compared to hydrogels that retained fluid for longer periods (> 4 h), although this performance was highly sensitive to total water content. The release of absorbed water in hydrogels is most likely a function of both Laplace pressure of emptying voids and chemically-linked osmotic pressure developing from an ion concentration gradient between the hydrogels and cement pore solution. If the osmotic pressure is strong enough, the hydrogels can disperse most of the absorbed water before the depercolation of capillary porosity occurs, allowing the water to permeate the bulk of the mortar microstructure and most effectively reduce self-desiccation and autogenous shrinkage.
引用
收藏
页码:4765 / 4778
页数:14
相关论文
共 39 条
[1]  
American Society for Testing Materials, 2012, E10402 ASTM
[2]  
Annual Water Quality Report, 2016, IND AM WAT
[3]  
[Anonymous], 2012, C15012 ASTM INT
[4]  
[Anonymous], 2014, C169809 ASTM INT
[5]  
[Anonymous], 2012, C30514 ASTM INT
[6]   Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates [J].
Bentur, A ;
Igarashi, S ;
Kovler, K .
CEMENT AND CONCRETE RESEARCH, 2001, 31 (11) :1587-1591
[7]  
Bentz D.P., 2005, Concrete International, V27, P35
[8]   Protected paste volume in concrete - Extension to internal curing using saturated lightweight fine aggregate [J].
Bentz, DP ;
Snyder, KA .
CEMENT AND CONCRETE RESEARCH, 1999, 29 (11) :1863-1867
[9]   EQUILIBRIUM SWELLING BEHAVIOR OF PH-SENSITIVE HYDROGELS [J].
BRANNONPEPPAS, L ;
PEPPAS, NA .
CHEMICAL ENGINEERING SCIENCE, 1991, 46 (03) :715-722
[10]  
BRANNONPEPPAS L, 1988, POLYM BULL, V20, P285