SOME NEW SCALES OF REFINED JENSEN AND HARDY TYPE INEQUALITIES

被引:7
作者
Abramovich, S. [1 ]
Persson, L. E. [2 ,3 ]
Samko, N. [2 ,4 ]
机构
[1] Univ Haifa, Dept Math, IL-31999 Haifa, Israel
[2] Lulea Univ Technol, Dept Engn Sci & Math, SE-971871 Lulea, Sweden
[3] Narvik Univ Coll, N-8505 Narvik, Norway
[4] Inst Super Tecn, Ctr CEAF, Dept Math, P-1049003 Lisbon, Portugal
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2014年 / 17卷 / 03期
关键词
Inequalities; refined Hardy type inequalities; refined Jensen type inequalities; convex functions; gamma-quasiconvex functions;
D O I
10.7153/mia-17-82
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Some scales of refined Jensen and Hardy type inequalities are derived and discussed. The key object in our technique is gamma-quasiconvex functions K(x) defined by K(x) x(-gamma) = phi (x), where phi is convex on [0, b), 0 < b <= infinity and gamma >= 0.
引用
收藏
页码:1105 / 1114
页数:10
相关论文
共 13 条
[1]  
ABRAMOVICH S., 2011, P IWOTA 201 IN PRESS
[2]  
Abramovich S., MATH INEQUA IN PRESS
[3]  
[Anonymous], 1977, CAN MATH B, DOI DOI 10.4153/CMB-1977-047-6
[4]   Note on a theorem of Hilbert. [J].
Hardy, GH .
MATHEMATISCHE ZEITSCHRIFT, 1920, 6 :314-317
[5]  
Hardy GH., 1928, Messenger Math, V57, P12
[6]  
Hardy GH., 1925, Messenger Math, V54, P150
[7]  
Kokilashvili V, 2010, MATH RES DEV, P1
[8]  
Kufner A., 2007, The Hardy inequality. About its history and some related results
[9]   Refinement of Hardy's inequalities via superquadratic and subquadratic functions [J].
Oguntuase, James Adedayo ;
Persson, Lars-Erik .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) :1305-1312
[10]  
PERSSON L. E., 2008, REFINEMENT HARDYS IN, P129