A β-xylosidase from cell wall of maize: Purification, properties and its use in hydrolysis of plant cell wall

被引:11
|
作者
Han, Yejun [1 ]
Chen, Hongzhang [1 ]
机构
[1] Chinese Acad Sci, Inst Proc Engn, Natl Key Lab Biochem Engn, Beijing 100190, Peoples R China
关键词
beta-Xylosidase; Plant cell wall proteins; Hemicellulose; Enzymatic hydrolysis; MOLECULAR-BIOLOGY; TRANSXYLOSYLATION; EXTRACTION; EXPRESSION; PROTEINS; XYLANASE;
D O I
10.1016/j.molcatb.2010.01.004
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
To study the potential of plant glycoside hydrolase for hemicelluloses hydrolysis, a beta-xylosidase with molecular weight of 68.5 kDa was purified from the maize during senescent stage. The optimal conditions for the beta-xylosidase were 37 degrees C and pH 4.5. In absence of substrate, the beta-xylosidase was comparatively stable at 37 degrees C and pH 4.5-5.5. At the optimum condition, the K-m and k(cat) values of the beta-xylosidase against p-nitrophenyl-xyloside were 2.5 mM and 6.5 s(-1), respectively. The enzyme activity was promoted by LiCl, CaCl2, MnCl2, MgCl2, KCl. and NaCl, however severely inhibited by CuCl2, ZnCl2, AgNO3, HgCl2, and NiCl2. The purified beta-xylosidase was active against xylobiose, xylotriose, xylotetraose, and xylopentaose. In hydrolysis of corn stover hemicellulose, the xylose production increased by 94.9% and 140% when Trichoderma reesei hemicellulase supplemented with purified beta-xylosidase and crude cell wall proteins of corn stover, respectively. The biochemical characterization of the maize beta-xylosidase makes it a promising candidate enzyme additive for hemicelluloses hydrolysis. (C) 2010 Elsevier By. All rights reserved.
引用
收藏
页码:135 / 140
页数:6
相关论文
共 50 条