Gaussian solitons in nonlinear Schrodinger equation

被引:0
|
作者
Nassar, AB [1 ]
Bassalo, JMF
Alencar, PTS
de Souza, JF
de Oliveira, JE
Cattani, M
机构
[1] Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
[2] Harvard Westlake Sch, Dept Phys, N Hollywood, CA 91604 USA
[3] UFPA, Dept Fis, BR-66075900 Belem, Para, Brazil
[4] Ctr Fed Educ Tecnol Para, BR-66060600 Belem, Para, Brazil
[5] Univ Sao Paulo, Ist Fis, BR-05315970 Sao Paulo, Brazil
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a condition on the parameter controlling the strength of the nonlinearity of a nonlinear Schrodinger equation which grants the possibility of nonspreading Gaussian wave packet solutions for an inverted parabolic potential. Our analysis is performed using the de Broglie-Bohm formalism.
引用
收藏
页码:941 / 946
页数:6
相关论文
共 50 条
  • [21] Solitons interaction and their stability based on Nonlinear Schrodinger equation
    Shahzad, Asim
    Zafrullah, M.
    2009 SECOND INTERNATIONAL CONFERENCE ON MACHINE VISION, PROCEEDINGS, ( ICMV 2009), 2009, : 305 - +
  • [22] Evolution of solitons of nonlinear Schrodinger equation with variable parameters
    文双春
    徐文成
    郭旗
    刘颂豪
    Science China Mathematics, 1997, (12) : 1300 - 1304
  • [23] Dressed Dark Solitons of the Defocusing Nonlinear Schrodinger Equation
    Lou Sen-Yue
    Cheng Xue-Ping
    Tang Xiao-Yan
    CHINESE PHYSICS LETTERS, 2014, 31 (07)
  • [24] Dissipative surface solitons in a nonlinear fractional Schrodinger equation
    Huang, Changming
    Dong, Liangwei
    OPTICS LETTERS, 2019, 44 (22) : 5438 - 5441
  • [25] INTERMITTENCY OF GROWTH AND SOLITONS OF THE NONLINEAR SCHRODINGER-EQUATION
    MIKHAILOV, AS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (14): : L757 - L763
  • [26] Evolution of solitons of nonlinear Schrodinger equation with variable parameters
    Wen, SC
    Xu, WC
    Guo, Q
    Liu, SH
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1997, 40 (12): : 1300 - 1304
  • [27] OSCILLATING SOLITONS OF THE DRIVEN, DAMPED NONLINEAR SCHRODINGER EQUATION
    Zemlyanaya, E. V.
    Alexeeva, N. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 159 (03) : 870 - 876
  • [28] DISPERSIVE PERTURBATIONS OF SOLITONS OF THE NONLINEAR SCHRODINGER-EQUATION
    GORDON, JP
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1992, 9 (01) : 91 - 97
  • [29] Surface gap solitons in a nonlinear fractional Schrodinger equation
    Xiao, Jing
    Tian, Zhaoxia
    Huang, Changming
    Dong, Liangwei
    OPTICS EXPRESS, 2018, 26 (03): : 2650 - 2658
  • [30] Travelling solitons in the externally driven nonlinear Schrodinger equation
    Barashenkov, I. V.
    Zemlyanaya, E. V.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (46)