Gaussian solitons in nonlinear Schrodinger equation

被引:0
作者
Nassar, AB [1 ]
Bassalo, JMF
Alencar, PTS
de Souza, JF
de Oliveira, JE
Cattani, M
机构
[1] Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
[2] Harvard Westlake Sch, Dept Phys, N Hollywood, CA 91604 USA
[3] UFPA, Dept Fis, BR-66075900 Belem, Para, Brazil
[4] Ctr Fed Educ Tecnol Para, BR-66060600 Belem, Para, Brazil
[5] Univ Sao Paulo, Ist Fis, BR-05315970 Sao Paulo, Brazil
来源
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS | 2002年 / 117卷 / 08期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a condition on the parameter controlling the strength of the nonlinearity of a nonlinear Schrodinger equation which grants the possibility of nonspreading Gaussian wave packet solutions for an inverted parabolic potential. Our analysis is performed using the de Broglie-Bohm formalism.
引用
收藏
页码:941 / 946
页数:6
相关论文
共 18 条
[1]   A note on grey solitons of the cubic-quintic Schrodinger equation (vol 278, pg 260, 2001) [J].
Agüero, M .
PHYSICS LETTERS A, 2001, 286 (2-3) :225-226
[2]   Optical solitary waves in two- and three-dimensional nonlinear photonic band-gap structures [J].
Akozbek, N ;
John, S .
PHYSICAL REVIEW E, 1998, 57 (02) :2287-2319
[3]  
Biswas A, 2001, J MOD OPTIC, V48, P1135, DOI 10.1080/09500340010022275
[4]   UNBROKEN QUANTUM REALISM, FROM MICROSCOPIC TO MACROSCOPIC LEVELS [J].
BOHM, D ;
HILEY, BJ .
PHYSICAL REVIEW LETTERS, 1985, 55 (23) :2511-2514
[5]   A QUANTUM POTENTIAL APPROACH TO THE WHEELER DELAYED-CHOICE EXPERIMENT [J].
BOHM, DJ ;
DEWDNEY, C ;
HILEY, BH .
NATURE, 1985, 315 (6017) :294-297
[6]   PHOTON MASS AND NEW EXPERIMENTAL RESULTS ON LONGITUDINAL DISPLACEMENTS OF LASER-BEAMS NEAR TOTAL REFLECTION [J].
BROGLIE, LD ;
VIGIER, JP .
PHYSICAL REVIEW LETTERS, 1972, 28 (15) :1001-&
[7]   DAVYDOV SOLITONS - NEW RESULTS AT VARIANCE WITH STANDARD DERIVATIONS [J].
BROWN, DW ;
WEST, BJ ;
LINDENBERG, K .
PHYSICAL REVIEW A, 1986, 33 (06) :4110-4120
[8]   SINE-GORDON SOLITONS DO NOT BEHAVE LIKE NEWTONIAN PARTICLES [J].
FERNANDEZ, JC ;
GAMBAUDO, JM ;
GAUTHIER, S ;
REINISCH, G .
PHYSICAL REVIEW LETTERS, 1981, 46 (12) :753-756
[9]   Wave group dynamics in weakly nonlinear long-wave models [J].
Grimshaw, R ;
Pelinovsky, D ;
Pelinovsky, E ;
Talipova, T .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 159 (1-2) :35-57
[10]   Short optical solitons in fibers [J].
Gromov, EM ;
Talanov, VI .
CHAOS, 2000, 10 (03) :551-558