Gaussian solitons in nonlinear Schrodinger equation

被引:0
|
作者
Nassar, AB [1 ]
Bassalo, JMF
Alencar, PTS
de Souza, JF
de Oliveira, JE
Cattani, M
机构
[1] Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
[2] Harvard Westlake Sch, Dept Phys, N Hollywood, CA 91604 USA
[3] UFPA, Dept Fis, BR-66075900 Belem, Para, Brazil
[4] Ctr Fed Educ Tecnol Para, BR-66060600 Belem, Para, Brazil
[5] Univ Sao Paulo, Ist Fis, BR-05315970 Sao Paulo, Brazil
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a condition on the parameter controlling the strength of the nonlinearity of a nonlinear Schrodinger equation which grants the possibility of nonspreading Gaussian wave packet solutions for an inverted parabolic potential. Our analysis is performed using the de Broglie-Bohm formalism.
引用
收藏
页码:941 / 946
页数:6
相关论文
共 50 条
  • [1] Variable sinh-Gaussian solitons in nonlocal nonlinear Schrodinger equation
    Yang, Zhen-Jun
    Zhang, Shu-Min
    Li, Xing-Liang
    Pang, Zhao-Guang
    APPLIED MATHEMATICS LETTERS, 2018, 82 : 64 - 70
  • [2] Solitons of the generalized nonlinear Schrodinger equation
    Tsoy, Eduard N.
    Suyunov, Laziz A.
    PHYSICA D-NONLINEAR PHENOMENA, 2020, 414
  • [3] Colliding Solitons for the Nonlinear Schrodinger Equation
    Abou Salem, W. K.
    Froehlich, J.
    Sigal, I. M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 291 (01) : 151 - 176
  • [4] Bragg solitons and the nonlinear Schrodinger equation
    de Sterke, CM
    Eggleton, BJ
    PHYSICAL REVIEW E, 1999, 59 (01) : 1267 - 1269
  • [5] On the Dynamics of Solitons in the Nonlinear Schrodinger Equation
    Benci, Vieri
    Ghimenti, Marco
    Micheletti, Anna Maria
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (02) : 467 - 492
  • [6] Stationary Hermite-Gaussian solitons and their control for nonlinear Schrodinger equation with complex potential
    Kaur, Harneet
    Bhatia, Sanjana
    Goyal, Amit
    Kumar, C. N.
    PHYSICS LETTERS A, 2021, 419 (419)
  • [7] Bipolar solitons of the focusing nonlinear Schrodinger equation
    Liu, Zhongxuan
    Feng, Qi
    Lin, Chengyou
    Chen, Zhaoyang
    Ding, Yingchun
    PHYSICA B-CONDENSED MATTER, 2016, 501 : 117 - 122
  • [8] Moving solitons in the discrete nonlinear Schrodinger equation
    Oxtoby, O. F.
    Barashenkov, I. V.
    PHYSICAL REVIEW E, 2007, 76 (03):
  • [9] Formation of solitons for the modified nonlinear Schrodinger equation
    Akram, Ghazala
    Sadaf, Maasoomah
    Arshed, Saima
    Raza, Muhammad Zubair
    Alzaidi, Ahmed S. M.
    MODERN PHYSICS LETTERS B, 2024, 38 (22):
  • [10] ON ASYMPTOTIC STABILITY OF SOLITONS IN A NONLINEAR SCHRODINGER EQUATION
    Komech, Alexander
    Kopylova, Elena
    Stuart, David
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (03) : 1063 - 1079