Gaussian solitons in nonlinear Schrodinger equation
被引:0
|
作者:
Nassar, AB
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USAUniv Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
Nassar, AB
[1
]
Bassalo, JMF
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
Bassalo, JMF
Alencar, PTS
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
Alencar, PTS
de Souza, JF
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
de Souza, JF
de Oliveira, JE
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
de Oliveira, JE
Cattani, M
论文数: 0引用数: 0
h-index: 0
机构:Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
Cattani, M
机构:
[1] Univ Calif Los Angeles, Dept Sci, Extens Program, Los Angeles, CA 90024 USA
[2] Harvard Westlake Sch, Dept Phys, N Hollywood, CA 91604 USA
[3] UFPA, Dept Fis, BR-66075900 Belem, Para, Brazil
[4] Ctr Fed Educ Tecnol Para, BR-66060600 Belem, Para, Brazil
[5] Univ Sao Paulo, Ist Fis, BR-05315970 Sao Paulo, Brazil
We find a condition on the parameter controlling the strength of the nonlinearity of a nonlinear Schrodinger equation which grants the possibility of nonspreading Gaussian wave packet solutions for an inverted parabolic potential. Our analysis is performed using the de Broglie-Bohm formalism.