Absorption and phase decoupling in transport of intensity diffraction tomography

被引:6
作者
Bai, Zhidong [1 ,2 ,3 ,4 ]
Chen, Qian [1 ,2 ,4 ]
Ullah, Habib [1 ,2 ,3 ,4 ]
Lu, Linpeng [1 ,2 ,3 ,4 ]
Zhou, Ning [1 ,2 ,3 ,4 ]
Zhoua, Shun [1 ,2 ,3 ,4 ]
Li, Jiaji [1 ,2 ,3 ,4 ,5 ]
Zuo, Chao [1 ,2 ,3 ,4 ,5 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, 200 Xiaolingwei St, Nanjing 210094, Jiangsu, Peoples R China
[2] Jiangsu Key Lab Spectral Imaging & Intelligent Sen, Nanjing 210094, Jiangsu, Peoples R China
[3] Nanjing Univ Sci & Technol, Smart Computat Imaging Lab SCILab, Nanjing 210094, Jiangsu, Peoples R China
[4] Smart Computat Imaging Res Inst SCIRI Nanjing Univ, Nanjing 210019, Jiangsu, Peoples R China
[5] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, 200 Xiaolingwei St, Nanjing 210094, Jiangsu, Peoples R China
关键词
Transport of intensity diffraction tomography; Phase imaging; Complex refractive index; Partially coherent illumination; PARTIALLY COHERENT ILLUMINATION; REFRACTIVE-INDEX; MICROSCOPY TECHNIQUE; CONTRAST MICROSCOPY; HIGH-THROUGHPUT; PRINCIPLES; ANGLE;
D O I
10.1016/j.optlaseng.2022.107082
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Here we report a valid reconstruction approach to decouple the phase and absorption components of complex refractive index in the transport of intensity diffraction tomography (TIDT) microscopy. Within the existed diffraction tomographic reconstruction framework, the objects refractive index (RI) and absorption components are usually intertwined with each other in the scattering field, complicating the complex refractive index reconstruction process. With the closed-form deconvolution solution and two intensity image datasets captured through focus, we realize the decoupling of the RI part of the specimens and the absorption part in TIDT without pure phase approximation or linearized weak absorption. The difference between the RI and absorption parts of the complex refractive index reconstruction reveals the optical properties of the different components of the object. Simulation and experiments are both performed to validate our decoupling approach based on the simulated 3D resolution target, human breast cancer cell lines MCF-7 and Thalassiosira diatom. The results of the simulations and experiments suggest that the proposed approach is successful and effective for investigating the structural diversity of biological cells at the subcellular level.
引用
收藏
页数:9
相关论文
共 59 条
[1]   Intensity-based holographic imaging via space-domain Kramers-Kronig relations [J].
Baek, YoonSeok ;
Park, YongKeun .
NATURE PHOTONICS, 2021, 15 (05) :354-360
[2]   Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function [J].
Bao, Yijun ;
Gaylord, Thomas K. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (11) :2125-2136
[3]   Quantitative optical phase microscopy [J].
Barty, A ;
Nugent, KA ;
Paganin, D ;
Roberts, A .
OPTICS LETTERS, 1998, 23 (11) :817-819
[4]   Quantitative phase tomography [J].
Barty, A ;
Nugent, KA ;
Roberts, A ;
Paganin, D .
OPTICS COMMUNICATIONS, 2000, 175 (4-6) :329-336
[5]  
Biggs DS., 2010, CURR PROTOC CYTOM, V52, P12
[6]   Multi-layer Born multiple-scattering model for 3D phase microscopy [J].
Chen, Michael ;
Ren, David ;
Liu, Hsiou-Yuan ;
Chowdhury, Shwetadwip ;
Waller, Laura .
OPTICA, 2020, 7 (05) :394-403
[7]   3D differential phase contrast microscopy [J].
Chen, Michael ;
Tian, Lei ;
Waller, Laura .
BIOMEDICAL OPTICS EXPRESS, 2016, 7 (10) :3940-3950
[8]   Tomographic phase microscopy [J].
Choi, Wonshik ;
Fang-Yen, Christopher ;
Badizadegan, Kamran ;
Oh, Seungeun ;
Lue, Niyom ;
Dasari, Ramachandra R. ;
Feld, Michael S. .
NATURE METHODS, 2007, 4 (09) :717-719
[9]  
Chowdhury S, 2019, OPTICA, V6, P1211, DOI [10.1364/OPTICA.6.001211, 10.1364/optica.6.001211]
[10]  
Cotte Y, 2013, NAT PHOTONICS, V7, P113, DOI [10.1038/nphoton.2012.329, 10.1038/NPHOTON.2012.329]