Generalized vector quasi-variational-like inequalities

被引:0
作者
Peng, Jian-wen [1 ]
机构
[1] Chongqing Normal Univ, Coll Math & Comp Sci, Chongqing 400047, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2007年 / 10卷 / 02期
关键词
set-valued mapping; generalized vector quasi-variational-like inequalities; L-eta-condition; existence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, some existence theorems for the generalized Vector quasi-variational-like inequalities without monotonicity are obtained.
引用
收藏
页码:417 / 426
页数:10
相关论文
共 36 条
[1]  
ANSARI QH, 1997, OPTIMIZATION, V41, P197
[2]  
ANSARI QH, 1997, ANN SCI MATH QUEBEC, V21, P1
[3]  
Aubin J.-P., 1984, Differential Inclusions
[4]   THE GENERALIZED QUASI-VARIATIONAL INEQUALITY PROBLEM [J].
CHAN, D ;
PANG, JS .
MATHEMATICS OF OPERATIONS RESEARCH, 1982, 7 (02) :211-222
[5]  
Chen G., 1987, INTERACTIVE INTELLIG, P408, DOI [10.1007/978-3-642-46607-6_44, DOI 10.1007/978-3-642-46607-6_44]
[6]   APPROXIMATE DUAL AND APPROXIMATE VECTOR VARIATIONAL INEQUALITY FOR MULTIOBJECTIVE OPTIMIZATION [J].
CHEN, GY ;
CRAVEN, BD .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1989, 47 :418-423
[7]   EXISTENCE OF SOLUTIONS FOR A VECTOR VARIATIONAL INEQUALITY - AN EXTENSION OF THE HARTMANN-STAMPACCHIA THEOREM [J].
CHEN, GY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :445-456
[8]  
CHEN GY, 1990, J MATH ANAL APPL, V153, P136
[9]   Existence of solutions for a generalized vector quasivariational inequality [J].
Chen, GY ;
Li, SJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1996, 90 (02) :321-334
[10]  
CHEN GY, 1990, Z OPERATIONS RES, V3, P1