p-Adic Stability In Linear Algebra

被引:10
作者
Caruso, Xavier [1 ]
Roe, David [2 ]
Vaccon, Tristan [1 ]
机构
[1] Univ Rennes 1, Rennes, France
[2] Univ British Columbia, Vancouver, BC, Canada
来源
PROCEEDINGS OF THE 2015 ACM ON INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION (ISSAC'15) | 2015年
关键词
p-adic precision; linear algebra; ultrametric analysis;
D O I
10.1145/2755996.2756655
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Using the differential precision methods developed previously by the same authors, we study the p-adic stability of standard operations on matrices and vector spaces. We demonstrate that lattice-based methods surpass naive methods in many applications, such as matrix multiplication and sums and intersections of subspaces. We also analyze determinants, characteristic polynomials and LU factorization using these differential methods. We supplement our observations with numerical experiments.
引用
收藏
页码:101 / 108
页数:8
相关论文
共 8 条
  • [1] [Anonymous], 2001, J. Ramanujan Math. Soc.
  • [2] Introduction to random walks on homogeneous spaces
    Benoist, Yves
    Quint, Jean-Francois
    [J]. JAPANESE JOURNAL OF MATHEMATICS, 2012, 7 (02): : 135 - 166
  • [3] Bostan A., 2005, MEGA 05
  • [4] Tracking p-adic precision
    Caruso, Xavier
    Roe, David
    Vaccon, Tristan
    [J]. LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 : 274 - 294
  • [5] Gaudry P, 2006, LECT NOTES COMPUT SC, V4284, P114
  • [6] Gaudry Pierrick, 2010, CAMBRIDGE STUDIES AD, V125
  • [7] Deformation theory and the computation of zeta functions
    Lauder, AGB
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2004, 88 : 565 - 602
  • [8] Lercier R., 2008, Journal de Theorie des Nombres de Bordeaux, V20, P783