Regional Population Forecast and Analysis Based on Machine Learning Strategy

被引:13
|
作者
Wang, Chian-Yue [1 ]
Lee, Shin-Jye [2 ]
机构
[1] Natl Taipei Univ, Grad Inst Urban Planning, Taipei 237, Taiwan
[2] Natl Chiao Tung Univ, Inst Management Technol, Hsinchu 300, Taiwan
关键词
population growth prediction; boosting regression; XGBOOST; CLASSIFICATION; PREDICTION; REGRESSION; MIGRATION; NETWORKS; MODEL;
D O I
10.3390/e23060656
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Regional population forecast and analysis is of essence to urban and regional planning, and a well-designed plan can effectively construct a sound national infrastructure and stabilize positive population growth. Traditionally, either urban or regional planning relies on the opinions of demographers in terms of how the population of a city or a region will grow. Multi-regional population forecast is currently possible, carried out mainly on the basis of the Interregional Cohort-Component model. While this model has its unique advantages, several demographic rates are determined based on the decisions made by primary planners. Hence, the only drawback for cohort-component type population forecasting is allowing the analyst to specify the demographic rates of the future, and it goes without saying that this tends to introduce a biased result in forecasting accuracy. To effectively avoid this problem, this work proposes a machine learning-based method to forecast multi-regional population growth objectively. Thus, this work, drawing upon the newly developed machine learning technology, attempts to analyze and forecast the population growth of major cities in Taiwan. By effectively using the advantage of the XGBoost algorithm, the evaluation of feature importance and the forecast of multi-regional population growth between the present and the near future can be observed objectively, and it can further provide an objective reference to the urban planning of regional population.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Machine learning-based analysis of nutrient and water uptake in hydroponically grown soybeans
    Dhal, Sambandh Bhusan
    Mahanta, Shikhadri
    Moore, Janie McClurkin
    Kalafatis, Stavros
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [32] Food price dynamics and regional clusters: machine learning analysis of egg prices in China
    Liu, Chang
    Zhou, Lin
    Hoschle, Lisa
    Yu, Xiaohua
    CHINA AGRICULTURAL ECONOMIC REVIEW, 2023, 15 (02) : 416 - 432
  • [33] Machine learning methods to forecast temperature in buildings
    Mateo, Fernando
    Jose Carrasco, Juan
    Sellami, Abderrahim
    Millan-Giraldo, Monica
    Dominguez, Manuel
    Soria-Olivas, Emilio
    EXPERT SYSTEMS WITH APPLICATIONS, 2013, 40 (04) : 1061 - 1068
  • [34] Predicting weather forecast uncertainty with machine learning
    Scher, Sebastian
    Messori, Gabriele
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2018, 144 (717) : 2830 - 2841
  • [35] A machine learning framework to forecast wave conditions
    James, Scott C.
    Zhang, Yushan
    O'Donncha, Fearghal
    COASTAL ENGINEERING, 2018, 137 : 1 - 10
  • [36] Global Economic Market Forecast and Decision System for IoT and Machine Learning
    Liu, Biao
    Sun, Zhipeng
    MOBILE INFORMATION SYSTEMS, 2022, 2022
  • [37] DISEASE FORECAST USING MACHINE LEARNING ALGORITHMS
    Hussain, Mohammed Muzaffar
    Devi, S. Kalpana
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2022, 40 (5-6): : 1151 - 1165
  • [38] A Machine Learning Approach for Banks Classification and Forecast
    Fontalvo Herrera, Tomas J.
    De La Hoz Dominguez, Enrique
    EDUCATION EXCELLENCE AND INNOVATION MANAGEMENT THROUGH VISION 2020, 2019, : 1149 - 1159
  • [39] An Ensembled RBF Extreme Learning Machine to Forecast Road Surface Temperature
    Liu, Bo
    Yan, Shuo
    You, Huanling
    Dong, Yan
    Li, Jianqiang
    Li, Yong
    Lang, Jianlei
    Gu, Rentao
    2017 16TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2017, : 977 - 980
  • [40] An explainable two-stage machine learning approach for precipitation forecast
    Senocak, Ali Ulvi Galip
    Yilmaz, M. Tugrul
    Kalkan, Sinan
    Yucel, Ismail
    Amjad, Muhammad
    JOURNAL OF HYDROLOGY, 2023, 627