A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations

被引:3
作者
Yasar, Emrullah [1 ,2 ]
San, Sait [3 ]
机构
[1] Uludag Univ, Dept Math, Fac Arts & Sci, Bursa, Turkey
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[3] Eskisehir Osmangazi Univ, Dept Math Comp, Art Sci Fac, Eskisehir, Turkey
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2016年 / 71卷 / 05期
关键词
Conservation Laws; Kaup-Boussinesq Type of Coupled KdV System; Pochammer-Chree Equation; Symmetry; PARTIAL-DIFFERENTIAL-EQUATIONS; SYMMETRIES;
D O I
10.1515/zna-2016-0057
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this article, we established abundant local conservation laws to some nonlinear evolution equations by a new combined approach, which is a union of multiplier and Ibragimov's new conservation theorem method. One can conclude that the solutions of the adjoint equations corresponding to the new conservation theorem can be obtained via multiplier functions. Many new families of conservation laws of the Pochammer-Chree (PC) equation and the Kaup-Boussinesq type of coupled KdV system are successfully obtained. The combined method presents a wider applicability for handling the conservation laws of nonlinear wave equations. The conserved vectors obtained here can be important for the explanation of some practical physical problems, reductions, and solutions of the underlying equations.
引用
收藏
页码:475 / 480
页数:6
相关论文
共 50 条
  • [31] Symmetries, solutions and conservation laws of a class of nonlinear dispersive wave equations
    Luz Gandarias, Maria
    Khalique, Chaudry Masood
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2016, 32 : 114 - 121
  • [32] AUTOMATED DERIVATION OF THE CONSERVATION LAWS FOR NONLINEAR DIFFERENTIAL-DIFFERENCE EQUATIONS
    Jiaofeng ZHU
    Yinping LIU
    Journal of Systems Science & Complexity, 2012, 25 (06) : 1234 - 1248
  • [33] Automated derivation of the conservation laws for nonlinear differential-difference equations
    Jiaofeng Zhu
    Yinping Liu
    Journal of Systems Science and Complexity, 2012, 25 : 1234 - 1248
  • [34] Conservation laws of a nonlinear (1+1) wave equation
    Johnpillai, A. G.
    Kara, A. H.
    Mahomed, F. M.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2237 - 2242
  • [35] Conservation laws and exact solutions for some nonlinear partial differential equations
    Khater, A. H.
    Callebaut, D. K.
    Sayed, S. M.
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2006, 45 (03) : 603 - 630
  • [36] Conservation Laws and Exact Solutions for some Nonlinear Partial Differential Equations
    A. H. Khater
    D. K. Callebaut
    S. M. Sayed1
    International Journal of Theoretical Physics, 2006, 45 (3) : 589 - 616
  • [37] Conservation laws of a nonlinear (n+1) wave equation
    Bokhari, Ashfaque H.
    Al-Dweik, Ahmad Y.
    Mahomed, F. M.
    Zaman, F. D.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (04) : 2862 - 2870
  • [38] Automated derivation of the conservation laws for nonlinear differential-difference equations
    Zhu, Jiaofeng
    Liu, Yinping
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2012, 25 (06) : 1234 - 1248
  • [39] Potential symmetry generators and associated conservation laws of perturbed nonlinear equations
    Davison, AH
    Kara, AH
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (01) : 271 - 285
  • [40] Symmetries, Lagrangian and Conservation Laws for the Maxwell Equations
    Nail H. Ibragimov
    Acta Applicandae Mathematicae, 2009, 105 : 157 - 187