A Procedure to Construct Conservation Laws of Nonlinear Evolution Equations
被引:3
|
作者:
Yasar, Emrullah
论文数: 0引用数: 0
h-index: 0
机构:
Uludag Univ, Dept Math, Fac Arts & Sci, Bursa, Turkey
Utah State Univ, Dept Math & Stat, Logan, UT 84322 USAUludag Univ, Dept Math, Fac Arts & Sci, Bursa, Turkey
Yasar, Emrullah
[1
,2
]
San, Sait
论文数: 0引用数: 0
h-index: 0
机构:
Eskisehir Osmangazi Univ, Dept Math Comp, Art Sci Fac, Eskisehir, TurkeyUludag Univ, Dept Math, Fac Arts & Sci, Bursa, Turkey
San, Sait
[3
]
机构:
[1] Uludag Univ, Dept Math, Fac Arts & Sci, Bursa, Turkey
[2] Utah State Univ, Dept Math & Stat, Logan, UT 84322 USA
[3] Eskisehir Osmangazi Univ, Dept Math Comp, Art Sci Fac, Eskisehir, Turkey
Conservation Laws;
Kaup-Boussinesq Type of Coupled KdV System;
Pochammer-Chree Equation;
Symmetry;
PARTIAL-DIFFERENTIAL-EQUATIONS;
SYMMETRIES;
D O I:
10.1515/zna-2016-0057
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
In this article, we established abundant local conservation laws to some nonlinear evolution equations by a new combined approach, which is a union of multiplier and Ibragimov's new conservation theorem method. One can conclude that the solutions of the adjoint equations corresponding to the new conservation theorem can be obtained via multiplier functions. Many new families of conservation laws of the Pochammer-Chree (PC) equation and the Kaup-Boussinesq type of coupled KdV system are successfully obtained. The combined method presents a wider applicability for handling the conservation laws of nonlinear wave equations. The conserved vectors obtained here can be important for the explanation of some practical physical problems, reductions, and solutions of the underlying equations.
机构:
Brock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada
Univ Cadiz, Fac Sci, Dept Math, Cadiz 11510, SpainBrock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada
Recio, Elena
Anco, Stephen C.
论文数: 0引用数: 0
h-index: 0
机构:
Brock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, CanadaBrock Univ, Dept Math & Stat, St Catharines, ON L2S 3A1, Canada
机构:
North West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, ZA-2735 Mmabatho, South AfricaNorth West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, ZA-2735 Mmabatho, South Africa
机构:
E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R ChinaE China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
Huang Ding-Jiang
Zhou Shui-Geng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
Fudan Univ, Shanghai Key Lab Intelligent Informat Proc, Shanghai 200433, Peoples R ChinaE China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
Zhou Shui-Geng
Yang Qin-Min
论文数: 0引用数: 0
h-index: 0
机构:
E China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R ChinaE China Univ Sci & Technol, Dept Math, Shanghai 200237, Peoples R China
机构:
Zhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Peoples R ChinaZhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Peoples R China
He, Guoliang
Zhai, Yunyun
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Peoples R China
Zhai, Yunyun
Geng, Xianguo
论文数: 0引用数: 0
h-index: 0
机构:
Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Peoples R ChinaZhengzhou Univ Light Ind, Dept Math & Informat Sci, Zhengzhou 450002, Peoples R China