Local null controllability of a fluid-rigid body interaction problem with Navier slip boundary conditions

被引:0
作者
Djebour, Imene Aicha [1 ]
机构
[1] Univ Lorraine, CNRS, INRIA, IECL, F-54000 Nancy, France
关键词
Navier-Stokes system; Navier slip boundary conditions; Null controllability; fluid-solid interaction system; WEAK SOLUTIONS; FEEDBACK STABILIZATION; 2-DIMENSIONAL MOTION; SOLID SYSTEMS; STOKES SYSTEM; EXISTENCE; REGULARITY; BODIES;
D O I
10.1051/cocv/2021071
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this work is to show the local null controllability of a fluid-solid interaction system by using a distributed control located in the fluid. The fluid is modeled by the incompressible Navier-Stokes system with Navier slip boundary conditions and the rigid body is governed by the Newton laws. Our main result yields that we can drive the velocities of the fluid and of the structure to 0 and we can control exactly the position of the rigid body. One important ingredient consists in a new Carleman estimate for a linear fluid-rigid body system with Navier boundary conditions. This work is done without imposing any geometrical conditions on the rigid body.
引用
收藏
页数:46
相关论文
共 31 条
  • [1] Lp-theory for vector potentials and Sobolev's inequalities for vector fields
    Amrouche, Cherif
    Seloula, Nour El Houda
    [J]. COMPTES RENDUS MATHEMATIQUE, 2011, 349 (9-10) : 529 - 534
  • [2] [Anonymous], 1987, ZAP NAUCHN SEM LENIN
  • [3] Badra M, 2014, ADV DIFFERENTIAL EQU, V19, P1137
  • [4] Feedback stabilization of a simplified 1d fluid-particle system
    Badra, Mehdi
    Takahashi, Takeo
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (02): : 369 - 389
  • [5] Local null controllability of a fluid-solid interaction problem in dimension 3
    Boulakia, M.
    Guerrero, S.
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2013, 15 (03) : 825 - 856
  • [6] A regularity result for a solid-fluid system associated to the compressible Navier-Stokes equations
    Boulakia, M.
    Guerrero, S.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03): : 777 - 813
  • [7] Local null controllability of a two-dimensional fluid-structure interaction problem
    Boulakia, Muriel
    Osses, Axel
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2008, 14 (01) : 1 - 42
  • [8] Conca C, 2000, COMMUN PART DIFF EQ, V25, P1019
  • [9] Small-time global exact controllability of the Navier-Stokes equation with Navier slip-with-friction boundary conditions
    Coron, Jean-Michel
    Marbach, Frederic
    Sueur, Franck
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2020, 22 (05) : 1625 - 1673
  • [10] Null controllability of the N-dimensional Stokes system with N-1 scalar controls
    Coron, Jean-Michel
    Guerrero, Sergio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (07) : 2908 - 2921