On the well-posedness of the incompressible density-dependent Euler equations in the LP framework

被引:69
作者
Danchin, Raphael [1 ]
机构
[1] Univ Paris Est, LAMA, UMR 8050, F-94010 Creteil, France
关键词
BESOV-SPACES;
D O I
10.1016/j.jde.2009.09.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The present paper is devoted to the study of the well-posedness issue for the density-dependent Euler equations in the Whole space We establish local-in-time results for the Cauchy problem pertaining to data in the Besov spaces embedded in the set of Lipschitz functions, Including the borderline case B-p+1(N/p+1) (R-N) A continuation criterion in the spirit of the celebrated one by Beale. Kato and Majda (1984) in [2] for the classical Euler equations, is also proved. In contrast with the previous work dedicated to this system in the whole space, our approach is not restricted to the L-2 framework or to small perturbations of a constant density state we just need the density to be bounded away fiom zero The key to that Improvement is a new a prion estimate in Besov spaces for an elliptic equation with nonconstant coefficients (C) 2009 Elsevier Inc All rights reserved
引用
收藏
页码:2130 / 2170
页数:41
相关论文
共 20 条
[1]   REMARKS ON THE BREAKDOWN OF SMOOTH SOLUTIONS FOR THE 3-D EULER EQUATIONS [J].
BEALE, JT ;
KATO, T ;
MAJDA, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 94 (01) :61-66
[2]  
Beiro da Veiga H., 1980, I. Rend. Sem. Mat. Univ. Padova, V63, P151
[3]  
Beiro da Veiga H., 1980, Commun. Partial Differ. Equ, V5, P95, DOI DOI 10.1080/03605308008820134
[4]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[5]  
Danchin R., 2006, Annales de la Faculte des Sciences de Toulouse, Mathematiques, V15, P637, DOI 10.5802/afst.1133
[6]  
Danchin R., 2002, COMMUN PART DIFF EQ, V27, P2531
[7]  
DAVEIGA HB, 1980, J MATH ANAL APPL, V73, P338
[8]  
FAN J, 2009, DENSITY DEPENDENT IN
[9]  
Grafakos L, 2006, Classical and Modern Fourier Analysis
[10]  
Itoh S., 1995, J. Korean Math. Soc., V32, P41